Last updated 2022-07-08
This tutorial is a joint product of the Statnet Development Team:
Pavel N. Krivitsky (University of New South Wales)
Martina Morris (University of Washington)
Mark S. Handcock (University of California, Los Angeles)
Carter T. Butts (University of California, Irvine)
David R. Hunter (Penn State University)
Steven M. Goodreau (University of Washington)
Chad Klumb (University of Washington)
Skye Bender de-Moll (Oakland, CA)
Michał Bojanowski (Kozminski University, Poland)
The network modeling software demonstrated in this tutorial is authored by Carter Butts (relevent
, sna
).
statnet
ProjectAll statnet
packages are open-source, written for the R computing environment, and published on CRAN. The source repositories are hosted on GitHub. Our website is statnet.org
Need help? For general questions and comments, please email the statnet users group at statnet_help@uw.edu. You’ll need to join the listserv if you’re not already a member. You can do that here: statnet_help listserve.
Found a bug in our software? Please let us know by filing an issue in the appropriate package GitHub repository, with a reproducible example.
Want to request new functionality? We welcome suggestions – you can make a request by filing an issue on the appropriate package GitHub repository. The chances that this functionality will be developed are substantially improved if the requests are accompanied by some proposed code (we are happy to review pull requests).
For all other issues, please email us at contact@statnet.org.
This workshop and tutorial provide an introduction to statistical modeling of relational event data using statnet
software. This online tutorial is also designed for self-study, with example code and self-contained data. The statnet
package we will be demonstrating is:
relevent
– modeling and simulation for relational event modelsAdditional background on the tools, modeling framework, and data used in this tutorial may be found in the references at the bottom of this document.
This workshop assumes basic familiarity with R, experience with network concepts, terminology and data, and familiarity with the general framework for statistical modeling and inference. While previous experience with relational event models (REMs) is not required, some of the topics covered here may be difficult to understand without a strong background in linear and generalized linear models in statistics.
Minimally, you will need to install the latest version of R (available here) and the statnet
packages relevent
, sna
and network
to run the code presented here (sna
will automatically install network
when it is installed).
The full set of installation instructions with details can be found on the statnet
workshop wiki.
If you have not already downloaded the statnet
packages for this workshop, the quickest way to install these (and the other most commonly used packages from the statnet
suite), is to open an R session and type:
install.packages(c("relevent","sna"))
library(relevent)
library(sna)
You can check the version number with:
packageVersion("relevent")
[1] '1.1'
Throughout, we will set a random seed via set.seed()
for commands in tutorial that require simulating random values—this is not necessary, but it ensures that you will get the same results as the online tutorial.
rem.dyad
: Ordinal TimingDyadic relational event models are intended to capture the behavior of systems in which individual social units (persons, organizations, animals, etc.) direct discrete actions towards other individuals in their environment. Within the relevent
package, the rem.dyad
function is the primary workhorse for modeling dyadic data. Although less flexible than rem
(another relevent
tool, not covered in this tutorial), rem.dyad
contains many features that make it easier to work with in the dyadic case.
Data for use with rem.dyad
consists of dynamic edge lists, each edge being characterized by a sender, a recipient, and an event time. (Currently, self-edges and undirected edges are not supported – this will change in future versions!) Ideally, event times are known exactly; however, under the piecewise constant hazard assumption (per Butts, 2008) the relational event family can still be identified up to a pacing constant so long as the order of events is known. Since the case of ordinal timing is somewhat simpler than that of exact timing, we consider it first.
library(relevent) #Load the relevent library
load("relevent_workshop.RData") #Load the workshop data - may need to change directory!
The data we will use here comes from the World Trade Center radio communication data set coded by Butts et al. (2007). It consists of radio calls among 37 named communicants belonging to a police unit at the World Trade Center complex on the morning of 9/11/2001. The edgelist is contained in an object called WTCPoliceCalls
; printing it should yield output like the following:
WTCPoliceCalls
number source recipient
1 1 16 32
2 2 32 16
3 3 16 32
4 4 16 32
5 5 11 32
6 6 11 32
7 7 11 32
8 8 36 32
9 9 8 32
10 10 8 32
11 11 32 8
12 12 16 32
13 13 8 32
14 14 26 32
15 15 32 26
16 16 26 32
17 17 32 26
18 18 26 32
19 19 32 26
20 20 16 32
21 21 16 32
22 22 27 32
23 23 20 32
24 24 32 20
25 25 20 32
26 26 32 20
27 27 32 16
28 28 16 32
29 29 32 16
30 30 32 16
31 31 16 32
32 32 32 22
33 33 3 32
34 34 32 3
35 35 3 32
36 36 32 3
37 37 32 16
38 38 16 32
39 39 32 16
40 40 3 32
41 41 3 32
42 42 32 3
43 43 3 32
44 44 16 3
45 45 16 11
46 46 11 16
47 47 16 11
48 48 11 16
49 49 16 11
50 50 11 16
51 51 24 36
52 52 24 36
53 53 15 32
54 54 32 15
55 55 15 32
56 56 32 15
57 57 15 32
58 58 32 15
59 59 22 32
60 60 32 22
61 61 15 32
62 62 32 15
63 63 15 32
64 64 32 15
65 65 18 32
66 66 32 18
67 67 18 32
68 68 19 32
69 69 32 19
70 70 19 32
71 71 32 19
72 72 19 32
73 73 16 32
74 74 32 16
75 75 16 32
76 76 32 16
77 77 36 16
78 78 16 36
79 79 36 16
80 80 16 36
81 81 36 16
82 82 16 36
83 83 27 32
84 84 32 16
85 85 16 32
86 86 32 16
87 87 16 32
88 88 32 16
89 89 22 15
90 90 15 22
91 91 22 15
92 92 15 22
93 93 22 15
94 94 16 22
95 95 22 16
96 96 16 22
97 97 22 11
98 98 11 22
99 99 36 32
100 100 32 36
101 101 36 32
102 102 32 36
103 103 36 32
104 104 32 36
105 105 27 32
106 106 37 32
107 107 32 37
108 108 37 32
109 109 32 37
110 110 5 32
111 111 32 5
112 112 5 32
113 113 32 5
114 114 31 36
115 115 36 31
116 116 31 36
117 117 36 31
118 118 37 32
119 119 16 32
120 120 32 16
121 121 16 32
122 122 32 16
123 123 29 32
124 124 32 29
125 125 37 14
126 126 29 32
127 127 31 32
128 128 32 37
129 129 16 32
130 130 32 16
131 131 16 32
132 132 32 16
133 133 16 32
134 134 36 16
135 135 16 36
136 136 36 16
137 137 16 36
138 138 29 32
139 139 8 35
140 140 32 16
141 141 8 35
142 142 32 16
143 143 16 32
144 144 32 16
145 145 16 32
146 146 22 32
147 147 32 22
148 148 22 32
149 149 32 22
150 150 27 32
151 151 32 27
152 152 27 32
153 153 32 26
154 154 22 32
155 155 32 22
156 156 22 32
157 157 32 22
158 158 22 32
159 159 32 22
160 160 22 32
161 161 32 22
162 162 16 32
163 163 32 16
164 164 16 32
165 165 32 16
166 166 16 32
167 167 16 11
168 168 27 32
169 169 32 16
170 170 16 32
171 171 32 16
172 172 36 32
173 173 32 36
174 174 36 32
175 175 32 36
176 176 16 32
177 177 32 16
178 178 16 32
179 179 32 16
180 180 16 32
181 181 32 16
182 182 16 32
183 183 10 2
184 184 2 10
185 185 10 26
186 186 16 32
187 187 32 16
188 188 16 32
189 189 16 32
190 190 32 16
191 191 32 16
192 192 16 32
193 193 32 16
194 194 16 32
195 195 32 16
196 196 16 32
197 197 32 16
198 198 16 32
199 199 32 16
200 200 16 32
201 201 32 16
202 202 22 32
203 203 32 22
204 204 24 32
205 205 32 24
206 206 24 32
207 207 32 24
208 208 16 32
209 209 32 16
210 210 16 32
211 211 32 24
212 212 24 32
213 213 16 32
214 214 30 16
215 215 16 30
216 216 30 16
217 217 16 30
218 218 30 16
219 219 16 30
220 220 32 15
221 221 15 32
222 222 32 15
223 223 15 32
224 224 32 15
225 225 32 15
226 226 15 32
227 227 32 15
228 228 15 32
229 229 32 23
230 230 23 32
231 231 32 23
232 232 23 32
233 233 32 23
234 234 23 32
235 235 32 23
236 236 23 32
237 237 32 23
238 238 23 32
239 239 32 19
240 240 19 32
241 241 32 19
242 242 19 32
243 243 32 18
244 244 15 16
245 245 32 18
246 246 16 32
247 247 32 16
248 248 16 32
249 249 32 16
250 250 15 16
251 251 16 15
252 252 15 16
253 253 16 15
254 254 15 16
255 255 16 15
256 256 25 32
257 257 32 25
258 258 25 32
259 259 32 25
260 260 1 4
261 261 4 1
262 262 1 4
263 263 4 1
264 264 1 4
265 265 4 1
266 266 1 4
267 267 4 1
268 268 1 4
269 269 16 32
270 270 32 16
271 271 16 32
272 272 32 16
273 273 16 32
274 274 32 16
275 275 16 32
276 276 18 32
277 277 32 18
278 278 18 32
279 279 32 18
280 280 18 32
281 281 32 18
282 282 18 32
283 283 32 18
284 284 18 32
285 285 32 18
286 286 18 32
287 287 32 18
288 288 18 32
289 289 25 32
290 290 32 16
291 291 16 32
292 292 32 16
293 293 16 32
294 294 32 16
295 295 16 32
296 296 32 16
297 297 16 32
298 298 32 16
299 299 16 32
300 300 32 16
301 301 16 32
302 302 32 16
303 303 22 32
304 304 32 22
305 305 22 32
306 306 25 32
307 307 32 25
308 308 25 32
309 309 22 32
310 310 32 22
311 311 22 32
312 312 32 16
313 313 25 32
314 314 32 25
315 315 25 32
316 316 32 25
317 317 21 32
318 318 32 21
319 319 21 32
320 320 32 21
321 321 21 32
322 322 32 21
323 323 21 32
324 324 25 32
325 325 32 25
326 326 16 36
327 327 36 16
328 328 36 16
329 329 16 36
330 330 36 16
331 331 16 36
332 332 32 16
333 333 16 32
334 334 31 32
335 335 32 31
336 336 31 32
337 337 32 31
338 338 31 32
339 339 32 31
340 340 32 16
341 341 16 32
342 342 32 16
343 343 16 32
344 344 30 32
345 345 32 30
346 346 30 32
347 347 9 32
348 348 6 32
349 349 22 32
350 350 32 22
351 351 22 32
352 352 32 22
353 353 34 32
354 354 32 34
355 355 34 32
356 356 32 34
357 357 32 22
358 358 22 32
359 359 21 36
360 360 16 21
361 361 16 32
362 362 32 16
363 363 16 32
364 364 32 16
365 365 16 32
366 366 32 22
367 367 22 32
368 368 32 22
369 369 22 32
370 370 33 32
371 371 33 32
372 372 32 16
373 373 32 33
374 374 16 32
375 375 32 16
376 376 16 32
377 377 32 33
378 378 33 32
379 379 16 15
380 380 15 16
381 381 16 15
382 382 15 16
383 383 32 16
384 384 16 32
385 385 17 32
386 386 32 17
387 387 16 17
388 388 21 36
389 389 36 21
390 390 21 36
391 391 36 21
392 392 21 36
393 393 36 21
394 394 21 36
395 395 32 16
396 396 16 32
397 397 32 16
398 398 16 32
399 399 16 32
400 400 32 16
401 401 32 16
402 402 16 32
403 403 32 16
404 404 16 32
405 405 32 16
406 406 24 16
407 407 16 24
408 408 24 16
409 409 16 24
410 410 25 32
411 411 32 16
412 412 16 32
413 413 32 16
414 414 16 32
415 415 32 16
416 416 21 32
417 417 32 21
418 418 21 32
419 419 21 30
420 420 32 16
421 421 16 32
422 422 32 16
423 423 16 32
424 424 32 21
425 425 21 32
426 426 32 21
427 427 21 36
428 428 36 21
429 429 21 36
430 430 36 21
431 431 21 36
432 432 36 21
433 433 21 36
434 434 30 32
435 435 32 30
436 436 30 32
437 437 32 30
438 438 30 32
439 439 16 32
440 440 32 16
441 441 16 32
442 442 32 16
443 443 24 16
444 444 16 24
445 445 24 16
446 446 16 24
447 447 24 16
448 448 16 24
449 449 34 32
450 450 32 34
451 451 34 32
452 452 12 34
453 453 16 15
454 454 16 32
455 455 12 32
456 456 32 12
457 457 12 32
458 458 32 12
459 459 32 34
460 460 34 32
461 461 29 32
462 462 32 29
463 463 29 32
464 464 32 29
465 465 29 32
466 466 32 29
467 467 32 16
468 468 16 32
469 469 32 16
470 470 16 32
471 471 32 16
472 472 16 32
473 473 28 16
474 474 16 28
475 475 28 16
476 476 28 16
477 477 16 28
478 478 28 16
479 479 15 16
480 480 32 16
481 481 16 32
Note the form of the data: a matrix with the timing information, source (numbered from 1 to 37), and recipient (again numbered from 1 to 37) for each event (i.e., radio call). It is important to note that the WTC radio data was coded from transcripts that lacked detailed timing information; we do not therefore know precisely when these calls were made. We do, however, know the order in which calls were made, and can use this to fit relational event models with rem.dyad
.
Before analyzing the data, it is helpful to consider what it looks like in time aggregated form. The workshop-supplied helper function as.sociomatrix.eventlist
is useful for this purpose: it converts an event list into a valued sociomatrix, of the form used by other statnet
routines. Let’s convert the data to sociomatrix form, and visualize it using the gplot
function of the sna
package:
<- as.sociomatrix.eventlist(WTCPoliceCalls, 37)
WTCPoliceNet gplot(WTCPoliceNet, edge.lwd = WTCPoliceNet^0.75, vertex.col = 2 +
vertex.cex = 1.25) WTCPoliceIsICR,
In this visualization, we have scaled edge widths by communication volume – clearly, some pairs interact much more than others. Note also that we have colored vertices based on whether or not they occupy an institutionalized coordinative role (ICR), as indicated by the vector WTCPoliceIsICR
. Those for whom this vector is TRUE (green) occupy roles within the police organization that would be expected to participate in coordinative activities; other actors were not identified as occupying such roles, based on the transcript data. In the analyses below, we will employ this covariate (as well as various endogenous mechanisms) to model the dynamics of radio communication within the WTC police network.
Let’s begin by fitting a very simple covariate model, in which the propensity of individuals to send and receive calls depends on whether they occupy institutionalized coordinative roles:
# First ICR effect - total interaction
<- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt"),
wtcfit1 covar = list(CovInt = WTCPoliceIsICR), hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(wtcfit1)
Relational Event Model (Ordinal Likelihood)
Estimate Std.Err Z value Pr(>|z|)
CovInt.1 2.104464 0.069817 30.142 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 6193.998 on 480 degrees of freedom
Chi-square: 727.0499 on 1 degrees of freedom, asymptotic p-value 0
AIC: 6195.998 AICC: 6196.007 BIC: 6200.174
The output gives us the covariate effect, as well as some uncertainty and goodness-of-fit information. The format is much like the output for a regression model, but coefficients should be interpreted per the relational event framework. In particular, the ICR role coefficient is the logged multiplier for the hazard of an event involving an ICR, versus a non-ICR event. (The effect is cumulative: an event in which one actor in an ICR calls another actor in an ICR gets twice the log increment.) We can see this impact in real terms as follows:
exp(wtcfit1$coef) #Relative hazard for a non-ICR/ICR vs. a non-ICR/non-ICR event
CovInt.1
8.202708
exp(2 * wtcfit1$coef) #Relative hazard for an ICR/ICR vs. a non-ICR/non-ICR event
CovInt.1
67.28442
We have here considered a homogeneous effect of ICR status on sending and receiving; is it worth treating these effects separately? To do so, we enter the ICR covariate as a sender and receiver covariate (respectively):
<- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovSnd",
wtcfit2 "CovRec"), covar = list(CovSnd = WTCPoliceIsICR, CovRec = WTCPoliceIsICR),
hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(wtcfit2)
Relational Event Model (Ordinal Likelihood)
Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 1.979177 0.095745 20.671 < 2.2e-16 ***
CovRec.1 2.225722 0.092862 23.968 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 6190.175 on 479 degrees of freedom
Chi-square: 730.8731 on 2 degrees of freedom, asymptotic p-value 0
AIC: 6194.175 AICC: 6194.2 BIC: 6202.527
Does the effect seem to differ? Let’s see if fit improves (using the BIC):
$BIC - wtcfit2$BIC #Model 1 a bit lower - we prefer it wtcfit1
[1] -2.352663
Model selection criteria are the preferred way to compare models, but one can also use a test of equality on the coefficients:
$coef #Extract the coefficients wtcfit2
CovSnd.1 CovRec.1
1.979177 2.225722
$cov #Likewise, the posterior covariance matrix wtcfit2
[,1] [,2]
[1,] 0.0091670911 0.0009005431
[2,] 0.0009005431 0.0086233409
# Heuristic Wald test of equality (not Bayesian, but
# whatever)
<- diff(wtcfit2$coef)/sqrt(sum(diag(wtcfit2$cov)) - 2 * wtcfit2$cov[1,
z 2])
z
CovRec.1
1.949765
2 * (1 - pnorm(abs(z))) #Not conventionally significant - not strongly detectable
CovRec.1
0.05120412
There might be some difference between the ICR sender and receiver effects, but it doesn’t seem large enough to worry about. For now, we’ll just stick with the simpler model (with a uniform effect on total interaction).
Model adequacy is an important consideration: even given that our model is the best of those we’ve seen, is it good enough for our purposes? There are many ways to assess model adequacy; here, we focus on the ability of the relational event model to predict the next event in the sequence, given those that have come before. A natural question to ask when assessing the model is to ask when it is “surprised:” when does it encounter observations that are relatively poorly predicted? To investigate this, we can examine the deviance residuals:
<- 2 * log(37 * 36) #What would be the deviance residual for the null?
nullresid hist(wtcfit6$residuals) #Deviance residuals - most well-predicted, some around chance levels
abline(v = nullresid, col = 2)
mean(wtcfit6$residuals < nullresid) #Beating chance on almost all...
[1] 0.8898129
mean(wtcfit6$residuals < 3) #Upper limit of lower cluster is about 3
[1] 0.6839917
We seem to be doing pretty well here. As another way of evaluating the deviance residuals for the ordinal model, it is useful to note that the quantity \(\exp(DR/2)\) (where \(DR\) is the deviance residual) is a “random guessing equivalent,” or an effective number of events such that a random guess among such events as to which is coming next would be right as often as the model expects to be. We can easily compute this as follows:
quantile(exp(wtcfit6$residuals/2)) #'Random guessing equivalent' (ref is 1332)
0% 25% 50% 75% 100%
1.073634 1.268661 1.739723 204.538728 31633.030288
Note that there are 1332 possible events, so we are doing much, much better than an uninformative baseline. Likewise, we’ve come a long way from our initial model:
quantile(exp(wtcfit1$residuals/2)) #By comparison, first model much worse!
0% 25% 50% 75% 100%
390.0003 390.0003 390.0003 390.0003 3199.0589
In addition to overall examination of residuals, it can be useful to ask which particular events seem to be sources of surprise:
cbind(WTCPoliceCalls, wtcfit6$residuals > nullresid) #Which are the more surprising cases?
number source recipient wtcfit6$residuals > nullresid
1 1 16 32 FALSE
2 2 32 16 FALSE
3 3 16 32 FALSE
4 4 16 32 FALSE
5 5 11 32 TRUE
6 6 11 32 FALSE
7 7 11 32 FALSE
8 8 36 32 FALSE
9 9 8 32 FALSE
10 10 8 32 FALSE
11 11 32 8 FALSE
12 12 16 32 FALSE
13 13 8 32 FALSE
14 14 26 32 TRUE
15 15 32 26 FALSE
16 16 26 32 FALSE
17 17 32 26 FALSE
18 18 26 32 FALSE
19 19 32 26 FALSE
20 20 16 32 FALSE
21 21 16 32 FALSE
22 22 27 32 FALSE
23 23 20 32 FALSE
24 24 32 20 FALSE
25 25 20 32 FALSE
26 26 32 20 FALSE
27 27 32 16 FALSE
28 28 16 32 FALSE
29 29 32 16 FALSE
30 30 32 16 FALSE
31 31 16 32 FALSE
32 32 32 22 FALSE
33 33 3 32 TRUE
34 34 32 3 FALSE
35 35 3 32 FALSE
36 36 32 3 FALSE
37 37 32 16 FALSE
38 38 16 32 FALSE
39 39 32 16 FALSE
40 40 3 32 FALSE
41 41 3 32 FALSE
42 42 32 3 FALSE
43 43 3 32 FALSE
44 44 16 3 TRUE
45 45 16 11 FALSE
46 46 11 16 FALSE
47 47 16 11 FALSE
48 48 11 16 FALSE
49 49 16 11 FALSE
50 50 11 16 FALSE
51 51 24 36 TRUE
52 52 24 36 TRUE
53 53 15 32 FALSE
54 54 32 15 FALSE
55 55 15 32 FALSE
56 56 32 15 FALSE
57 57 15 32 FALSE
58 58 32 15 FALSE
59 59 22 32 FALSE
60 60 32 22 FALSE
61 61 15 32 FALSE
62 62 32 15 FALSE
63 63 15 32 FALSE
64 64 32 15 FALSE
65 65 18 32 TRUE
66 66 32 18 FALSE
67 67 18 32 FALSE
68 68 19 32 TRUE
69 69 32 19 FALSE
70 70 19 32 FALSE
71 71 32 19 FALSE
72 72 19 32 FALSE
73 73 16 32 FALSE
74 74 32 16 FALSE
75 75 16 32 FALSE
76 76 32 16 FALSE
77 77 36 16 TRUE
78 78 16 36 FALSE
79 79 36 16 FALSE
80 80 16 36 FALSE
81 81 36 16 FALSE
82 82 16 36 FALSE
83 83 27 32 FALSE
84 84 32 16 FALSE
85 85 16 32 FALSE
86 86 32 16 FALSE
87 87 16 32 FALSE
88 88 32 16 FALSE
89 89 22 15 TRUE
90 90 15 22 FALSE
91 91 22 15 FALSE
92 92 15 22 FALSE
93 93 22 15 FALSE
94 94 16 22 TRUE
95 95 22 16 FALSE
96 96 16 22 FALSE
97 97 22 11 TRUE
98 98 11 22 FALSE
99 99 36 32 FALSE
100 100 32 36 FALSE
101 101 36 32 FALSE
102 102 32 36 FALSE
103 103 36 32 FALSE
104 104 32 36 FALSE
105 105 27 32 TRUE
106 106 37 32 FALSE
107 107 32 37 FALSE
108 108 37 32 FALSE
109 109 32 37 FALSE
110 110 5 32 TRUE
111 111 32 5 FALSE
112 112 5 32 FALSE
113 113 32 5 FALSE
114 114 31 36 TRUE
115 115 36 31 FALSE
116 116 31 36 FALSE
117 117 36 31 FALSE
118 118 37 32 FALSE
119 119 16 32 FALSE
120 120 32 16 FALSE
121 121 16 32 FALSE
122 122 32 16 FALSE
123 123 29 32 TRUE
124 124 32 29 FALSE
125 125 37 14 TRUE
126 126 29 32 FALSE
127 127 31 32 TRUE
128 128 32 37 FALSE
129 129 16 32 FALSE
130 130 32 16 FALSE
131 131 16 32 FALSE
132 132 32 16 FALSE
133 133 16 32 FALSE
134 134 36 16 TRUE
135 135 16 36 FALSE
136 136 36 16 FALSE
137 137 16 36 FALSE
138 138 29 32 FALSE
139 139 8 35 TRUE
140 140 32 16 FALSE
141 141 8 35 TRUE
142 142 32 16 FALSE
143 143 16 32 FALSE
144 144 32 16 FALSE
145 145 16 32 FALSE
146 146 22 32 FALSE
147 147 32 22 FALSE
148 148 22 32 FALSE
149 149 32 22 FALSE
150 150 27 32 TRUE
151 151 32 27 FALSE
152 152 27 32 FALSE
153 153 32 26 FALSE
154 154 22 32 FALSE
155 155 32 22 FALSE
156 156 22 32 FALSE
157 157 32 22 FALSE
158 158 22 32 FALSE
159 159 32 22 FALSE
160 160 22 32 FALSE
161 161 32 22 FALSE
162 162 16 32 FALSE
163 163 32 16 FALSE
164 164 16 32 FALSE
165 165 32 16 FALSE
166 166 16 32 FALSE
167 167 16 11 TRUE
168 168 27 32 FALSE
169 169 32 16 FALSE
170 170 16 32 FALSE
171 171 32 16 FALSE
172 172 36 32 TRUE
173 173 32 36 FALSE
174 174 36 32 FALSE
175 175 32 36 FALSE
176 176 16 32 FALSE
177 177 32 16 FALSE
178 178 16 32 FALSE
179 179 32 16 FALSE
180 180 16 32 FALSE
181 181 32 16 FALSE
182 182 16 32 FALSE
183 183 10 2 TRUE
184 184 2 10 FALSE
185 185 10 26 FALSE
186 186 16 32 FALSE
187 187 32 16 FALSE
188 188 16 32 FALSE
189 189 16 32 FALSE
190 190 32 16 FALSE
191 191 32 16 FALSE
192 192 16 32 FALSE
193 193 32 16 FALSE
194 194 16 32 FALSE
195 195 32 16 FALSE
196 196 16 32 FALSE
197 197 32 16 FALSE
198 198 16 32 FALSE
199 199 32 16 FALSE
200 200 16 32 FALSE
201 201 32 16 FALSE
202 202 22 32 FALSE
203 203 32 22 FALSE
204 204 24 32 TRUE
205 205 32 24 FALSE
206 206 24 32 FALSE
207 207 32 24 FALSE
208 208 16 32 FALSE
209 209 32 16 FALSE
210 210 16 32 FALSE
211 211 32 24 FALSE
212 212 24 32 FALSE
213 213 16 32 FALSE
214 214 30 16 TRUE
215 215 16 30 FALSE
216 216 30 16 FALSE
217 217 16 30 FALSE
218 218 30 16 FALSE
219 219 16 30 FALSE
220 220 32 15 TRUE
221 221 15 32 FALSE
222 222 32 15 FALSE
223 223 15 32 FALSE
224 224 32 15 FALSE
225 225 32 15 FALSE
226 226 15 32 FALSE
227 227 32 15 FALSE
228 228 15 32 FALSE
229 229 32 23 FALSE
230 230 23 32 FALSE
231 231 32 23 FALSE
232 232 23 32 FALSE
233 233 32 23 FALSE
234 234 23 32 FALSE
235 235 32 23 FALSE
236 236 23 32 FALSE
237 237 32 23 FALSE
238 238 23 32 FALSE
239 239 32 19 FALSE
240 240 19 32 FALSE
241 241 32 19 FALSE
242 242 19 32 FALSE
243 243 32 18 FALSE
244 244 15 16 TRUE
245 245 32 18 FALSE
246 246 16 32 TRUE
247 247 32 16 FALSE
248 248 16 32 FALSE
249 249 32 16 FALSE
250 250 15 16 TRUE
251 251 16 15 FALSE
252 252 15 16 FALSE
253 253 16 15 FALSE
254 254 15 16 FALSE
255 255 16 15 FALSE
256 256 25 32 TRUE
257 257 32 25 FALSE
258 258 25 32 FALSE
259 259 32 25 FALSE
260 260 1 4 TRUE
261 261 4 1 FALSE
262 262 1 4 FALSE
263 263 4 1 FALSE
264 264 1 4 FALSE
265 265 4 1 FALSE
266 266 1 4 FALSE
267 267 4 1 FALSE
268 268 1 4 FALSE
269 269 16 32 FALSE
270 270 32 16 FALSE
271 271 16 32 FALSE
272 272 32 16 FALSE
273 273 16 32 FALSE
274 274 32 16 FALSE
275 275 16 32 FALSE
276 276 18 32 FALSE
277 277 32 18 FALSE
278 278 18 32 FALSE
279 279 32 18 FALSE
280 280 18 32 FALSE
281 281 32 18 FALSE
282 282 18 32 FALSE
283 283 32 18 FALSE
284 284 18 32 FALSE
285 285 32 18 FALSE
286 286 18 32 FALSE
287 287 32 18 FALSE
288 288 18 32 FALSE
289 289 25 32 FALSE
290 290 32 16 FALSE
291 291 16 32 FALSE
292 292 32 16 FALSE
293 293 16 32 FALSE
294 294 32 16 FALSE
295 295 16 32 FALSE
296 296 32 16 FALSE
297 297 16 32 FALSE
298 298 32 16 FALSE
299 299 16 32 FALSE
300 300 32 16 FALSE
301 301 16 32 FALSE
302 302 32 16 FALSE
303 303 22 32 FALSE
304 304 32 22 FALSE
305 305 22 32 FALSE
306 306 25 32 FALSE
307 307 32 25 FALSE
308 308 25 32 FALSE
309 309 22 32 FALSE
310 310 32 22 FALSE
311 311 22 32 FALSE
312 312 32 16 FALSE
313 313 25 32 FALSE
314 314 32 25 FALSE
315 315 25 32 FALSE
316 316 32 25 FALSE
317 317 21 32 TRUE
318 318 32 21 FALSE
319 319 21 32 FALSE
320 320 32 21 FALSE
321 321 21 32 FALSE
322 322 32 21 FALSE
323 323 21 32 FALSE
324 324 25 32 FALSE
325 325 32 25 FALSE
326 326 16 36 TRUE
327 327 36 16 FALSE
328 328 36 16 FALSE
329 329 16 36 FALSE
330 330 36 16 FALSE
331 331 16 36 FALSE
332 332 32 16 TRUE
333 333 16 32 FALSE
334 334 31 32 FALSE
335 335 32 31 FALSE
336 336 31 32 FALSE
337 337 32 31 FALSE
338 338 31 32 FALSE
339 339 32 31 FALSE
340 340 32 16 FALSE
341 341 16 32 FALSE
342 342 32 16 FALSE
343 343 16 32 FALSE
344 344 30 32 TRUE
345 345 32 30 FALSE
346 346 30 32 FALSE
347 347 9 32 TRUE
348 348 6 32 FALSE
349 349 22 32 FALSE
350 350 32 22 FALSE
351 351 22 32 FALSE
352 352 32 22 FALSE
353 353 34 32 TRUE
354 354 32 34 FALSE
355 355 34 32 FALSE
356 356 32 34 FALSE
357 357 32 22 FALSE
358 358 22 32 FALSE
359 359 21 36 TRUE
360 360 16 21 TRUE
361 361 16 32 FALSE
362 362 32 16 FALSE
363 363 16 32 FALSE
364 364 32 16 FALSE
365 365 16 32 FALSE
366 366 32 22 FALSE
367 367 22 32 FALSE
368 368 32 22 FALSE
369 369 22 32 FALSE
370 370 33 32 TRUE
371 371 33 32 FALSE
372 372 32 16 FALSE
373 373 32 33 FALSE
374 374 16 32 FALSE
375 375 32 16 FALSE
376 376 16 32 FALSE
377 377 32 33 FALSE
378 378 33 32 FALSE
379 379 16 15 TRUE
380 380 15 16 FALSE
381 381 16 15 FALSE
382 382 15 16 FALSE
383 383 32 16 FALSE
384 384 16 32 FALSE
385 385 17 32 TRUE
386 386 32 17 FALSE
387 387 16 17 TRUE
388 388 21 36 TRUE
389 389 36 21 FALSE
390 390 21 36 FALSE
391 391 36 21 FALSE
392 392 21 36 FALSE
393 393 36 21 FALSE
394 394 21 36 FALSE
395 395 32 16 FALSE
396 396 16 32 FALSE
397 397 32 16 FALSE
398 398 16 32 FALSE
399 399 16 32 FALSE
400 400 32 16 FALSE
401 401 32 16 FALSE
402 402 16 32 FALSE
403 403 32 16 FALSE
404 404 16 32 FALSE
405 405 32 16 FALSE
406 406 24 16 TRUE
407 407 16 24 FALSE
408 408 24 16 FALSE
409 409 16 24 FALSE
410 410 25 32 FALSE
411 411 32 16 FALSE
412 412 16 32 FALSE
413 413 32 16 FALSE
414 414 16 32 FALSE
415 415 32 16 FALSE
416 416 21 32 TRUE
417 417 32 21 FALSE
418 418 21 32 FALSE
419 419 21 30 TRUE
420 420 32 16 FALSE
421 421 16 32 FALSE
422 422 32 16 FALSE
423 423 16 32 FALSE
424 424 32 21 FALSE
425 425 21 32 FALSE
426 426 32 21 FALSE
427 427 21 36 FALSE
428 428 36 21 FALSE
429 429 21 36 FALSE
430 430 36 21 FALSE
431 431 21 36 FALSE
432 432 36 21 FALSE
433 433 21 36 FALSE
434 434 30 32 FALSE
435 435 32 30 FALSE
436 436 30 32 FALSE
437 437 32 30 FALSE
438 438 30 32 FALSE
439 439 16 32 FALSE
440 440 32 16 FALSE
441 441 16 32 FALSE
442 442 32 16 FALSE
443 443 24 16 FALSE
444 444 16 24 FALSE
445 445 24 16 FALSE
446 446 16 24 FALSE
447 447 24 16 FALSE
448 448 16 24 FALSE
449 449 34 32 FALSE
450 450 32 34 FALSE
451 451 34 32 FALSE
452 452 12 34 TRUE
453 453 16 15 TRUE
454 454 16 32 FALSE
455 455 12 32 TRUE
456 456 32 12 FALSE
457 457 12 32 FALSE
458 458 32 12 FALSE
459 459 32 34 FALSE
460 460 34 32 FALSE
461 461 29 32 FALSE
462 462 32 29 FALSE
463 463 29 32 FALSE
464 464 32 29 FALSE
465 465 29 32 FALSE
466 466 32 29 FALSE
467 467 32 16 FALSE
468 468 16 32 FALSE
469 469 32 16 FALSE
470 470 16 32 FALSE
471 471 32 16 FALSE
472 472 16 32 FALSE
473 473 28 16 TRUE
474 474 16 28 FALSE
475 475 28 16 FALSE
476 476 28 16 FALSE
477 477 16 28 FALSE
478 478 28 16 FALSE
479 479 15 16 FALSE
480 480 32 16 FALSE
481 481 16 32 FALSE
Using as.sociomatrix.eventlist
, we can even pull out these events and view them in time-aggregated form. This can give us a better sense of the structural context in which they occur:
<- as.sociomatrix.eventlist(WTCPoliceCalls[wtcfit6$residuals >
surprising 37)
nullresid, ], gplot(surprising) #Plot in network form
# Can also superimpose on the original network (coloring
# edges by fraction surprising)
<- matrix(rgb(surprising/(WTCPoliceNet + 0.01), 0, 0),
edgecol 37, 37) #Color me surprised
gplot(WTCPoliceNet, edge.col = edgecol, edge.lwd = WTCPoliceNet^0.75,
vertex.col = 2 + WTCPoliceIsICR)
Yet another approach to adequacy assessment is to consider the rank of the observed events in the predicted rate structure: that is, we ask to what extent the events viewed most likely to occur are in fact those that are observed.
hist(wtcfit6$observed.rank)
cbind(WTCPoliceCalls, wtcfit6$observed.rank) #Histogram of ranks
number source recipient wtcfit6$observed.rank
1 1 16 32 7
2 2 32 16 1
3 3 16 32 1
4 4 16 32 2
5 5 11 32 42
6 6 11 32 6
7 7 11 32 6
8 8 36 32 44
9 9 8 32 45
10 10 8 32 8
11 11 32 8 1
12 12 16 32 2
13 13 8 32 2
14 14 26 32 45
15 15 32 26 1
16 16 26 32 1
17 17 32 26 1
18 18 26 32 1
19 19 32 26 1
20 20 16 32 2
21 21 16 32 2
22 22 27 32 46
23 23 20 32 47
24 24 32 20 1
25 25 20 32 1
26 26 32 20 1
27 27 32 16 6
28 28 16 32 1
29 29 32 16 1
30 30 32 16 5
31 31 16 32 1
32 32 32 22 19
33 33 3 32 49
34 34 32 3 1
35 35 3 32 1
36 36 32 3 1
37 37 32 16 7
38 38 16 32 1
39 39 32 16 1
40 40 3 32 2
41 41 3 32 2
42 42 32 3 1
43 43 3 32 1
44 44 16 3 276
45 45 16 11 79
46 46 11 16 1
47 47 16 11 1
48 48 11 16 1
49 49 16 11 1
50 50 11 16 1
51 51 24 36 465
52 52 24 36 128
53 53 15 32 28
54 54 32 15 1
55 55 15 32 1
56 56 32 15 1
57 57 15 32 1
58 58 32 15 1
59 59 22 32 5
60 60 32 22 1
61 61 15 32 2
62 62 32 15 1
63 63 15 32 1
64 64 32 15 1
65 65 18 32 58
66 66 32 18 1
67 67 18 32 1
68 68 19 32 57
69 69 32 19 1
70 70 19 32 1
71 71 32 19 1
72 72 19 32 1
73 73 16 32 13
74 74 32 16 1
75 75 16 32 1
76 76 32 16 1
77 77 36 16 248
78 78 16 36 1
79 79 36 16 1
80 80 16 36 1
81 81 36 16 1
82 82 16 36 1
83 83 27 32 16
84 84 32 16 2
85 85 16 32 1
86 86 32 16 1
87 87 16 32 1
88 88 32 16 1
89 89 22 15 279
90 90 15 22 1
91 91 22 15 1
92 92 15 22 1
93 93 22 15 1
94 94 16 22 434
95 95 22 16 1
96 96 16 22 1
97 97 22 11 29
98 98 11 22 1
99 99 36 32 28
100 100 32 36 1
101 101 36 32 1
102 102 32 36 1
103 103 36 32 1
104 104 32 36 1
105 105 27 32 25
106 106 37 32 62
107 107 32 37 1
108 108 37 32 1
109 109 32 37 1
110 110 5 32 72
111 111 32 5 1
112 112 5 32 1
113 113 32 5 1
114 114 31 36 286
115 115 36 31 1
116 116 31 36 1
117 117 36 31 1
118 118 37 32 3
119 119 16 32 13
120 120 32 16 1
121 121 16 32 1
122 122 32 16 1
123 123 29 32 75
124 124 32 29 1
125 125 37 14 158
126 126 29 32 3
127 127 31 32 66
128 128 32 37 15
129 129 16 32 2
130 130 32 16 1
131 131 16 32 1
132 132 32 16 1
133 133 16 32 1
134 134 36 16 118
135 135 16 36 1
136 136 36 16 1
137 137 16 36 1
138 138 29 32 3
139 139 8 35 789
140 140 32 16 15
141 141 8 35 128
142 142 32 16 15
143 143 16 32 1
144 144 32 16 1
145 145 16 32 1
146 146 22 32 42
147 147 32 22 1
148 148 22 32 1
149 149 32 22 1
150 150 27 32 30
151 151 32 27 1
152 152 27 32 1
153 153 32 26 32
154 154 22 32 3
155 155 32 22 1
156 156 22 32 1
157 157 32 22 1
158 158 22 32 1
159 159 32 22 1
160 160 22 32 1
161 161 32 22 1
162 162 16 32 2
163 163 32 16 1
164 164 16 32 1
165 165 32 16 1
166 166 16 32 1
167 167 16 11 62
168 168 27 32 3
169 169 32 16 2
170 170 16 32 1
171 171 32 16 1
172 172 36 32 28
173 173 32 36 1
174 174 36 32 1
175 175 32 36 1
176 176 16 32 2
177 177 32 16 1
178 178 16 32 1
179 179 32 16 1
180 180 16 32 1
181 181 32 16 1
182 182 16 32 1
183 183 10 2 821
184 184 2 10 1
185 185 10 26 60
186 186 16 32 3
187 187 32 16 1
188 188 16 32 1
189 189 16 32 2
190 190 32 16 1
191 191 32 16 12
192 192 16 32 1
193 193 32 16 1
194 194 16 32 1
195 195 32 16 1
196 196 16 32 1
197 197 32 16 1
198 198 16 32 1
199 199 32 16 1
200 200 16 32 1
201 201 32 16 1
202 202 22 32 2
203 203 32 22 1
204 204 24 32 72
205 205 32 24 1
206 206 24 32 1
207 207 32 24 1
208 208 16 32 2
209 209 32 16 1
210 210 16 32 1
211 211 32 24 14
212 212 24 32 1
213 213 16 32 2
214 214 30 16 260
215 215 16 30 1
216 216 30 16 1
217 217 16 30 1
218 218 30 16 1
219 219 16 30 1
220 220 32 15 136
221 221 15 32 1
222 222 32 15 1
223 223 15 32 1
224 224 32 15 1
225 225 32 15 16
226 226 15 32 1
227 227 32 15 1
228 228 15 32 1
229 229 32 23 50
230 230 23 32 1
231 231 32 23 1
232 232 23 32 1
233 233 32 23 1
234 234 23 32 1
235 235 32 23 1
236 236 23 32 1
237 237 32 23 1
238 238 23 32 1
239 239 32 19 35
240 240 19 32 1
241 241 32 19 1
242 242 19 32 1
243 243 32 18 37
244 244 15 16 265
245 245 32 18 91
246 246 16 32 22
247 247 32 16 1
248 248 16 32 1
249 249 32 16 1
250 250 15 16 121
251 251 16 15 1
252 252 15 16 1
253 253 16 15 1
254 254 15 16 1
255 255 16 15 1
256 256 25 32 46
257 257 32 25 1
258 258 25 32 1
259 259 32 25 1
260 260 1 4 981
261 261 4 1 1
262 262 1 4 1
263 263 4 1 1
264 264 1 4 1
265 265 4 1 1
266 266 1 4 1
267 267 4 1 1
268 268 1 4 1
269 269 16 32 22
270 270 32 16 1
271 271 16 32 1
272 272 32 16 1
273 273 16 32 1
274 274 32 16 1
275 275 16 32 1
276 276 18 32 2
277 277 32 18 1
278 278 18 32 1
279 279 32 18 1
280 280 18 32 1
281 281 32 18 1
282 282 18 32 1
283 283 32 18 1
284 284 18 32 1
285 285 32 18 1
286 286 18 32 1
287 287 32 18 1
288 288 18 32 1
289 289 25 32 2
290 290 32 16 17
291 291 16 32 1
292 292 32 16 1
293 293 16 32 1
294 294 32 16 1
295 295 16 32 1
296 296 32 16 1
297 297 16 32 1
298 298 32 16 1
299 299 16 32 1
300 300 32 16 1
301 301 16 32 1
302 302 32 16 1
303 303 22 32 2
304 304 32 22 1
305 305 22 32 1
306 306 25 32 2
307 307 32 25 1
308 308 25 32 1
309 309 22 32 2
310 310 32 22 1
311 311 22 32 1
312 312 32 16 16
313 313 25 32 3
314 314 32 25 1
315 315 25 32 1
316 316 32 25 1
317 317 21 32 78
318 318 32 21 1
319 319 21 32 1
320 320 32 21 1
321 321 21 32 1
322 322 32 21 1
323 323 21 32 1
324 324 25 32 2
325 325 32 25 1
326 326 16 36 142
327 327 36 16 1
328 328 36 16 20
329 329 16 36 1
330 330 36 16 1
331 331 16 36 1
332 332 32 16 47
333 333 16 32 1
334 334 31 32 40
335 335 32 31 1
336 336 31 32 1
337 337 32 31 1
338 338 31 32 1
339 339 32 31 1
340 340 32 16 14
341 341 16 32 1
342 342 32 16 1
343 343 16 32 1
344 344 30 32 79
345 345 32 30 1
346 346 30 32 1
347 347 9 32 75
348 348 6 32 77
349 349 22 32 2
350 350 32 22 1
351 351 22 32 1
352 352 32 22 1
353 353 34 32 81
354 354 32 34 1
355 355 34 32 1
356 356 32 34 1
357 357 32 22 18
358 358 22 32 1
359 359 21 36 326
360 360 16 21 718
361 361 16 32 2
362 362 32 16 1
363 363 16 32 1
364 364 32 16 1
365 365 16 32 1
366 366 32 22 18
367 367 22 32 1
368 368 32 22 1
369 369 22 32 1
370 370 33 32 83
371 371 33 32 44
372 372 32 16 19
373 373 32 33 17
374 374 16 32 2
375 375 32 16 1
376 376 16 32 1
377 377 32 33 19
378 378 33 32 1
379 379 16 15 133
380 380 15 16 1
381 381 16 15 1
382 382 15 16 1
383 383 32 16 33
384 384 16 32 1
385 385 17 32 87
386 386 32 17 1
387 387 16 17 1078
388 388 21 36 145
389 389 36 21 1
390 390 21 36 1
391 391 36 21 1
392 392 21 36 1
393 393 36 21 1
394 394 21 36 1
395 395 32 16 36
396 396 16 32 1
397 397 32 16 1
398 398 16 32 1
399 399 16 32 2
400 400 32 16 1
401 401 32 16 18
402 402 16 32 1
403 403 32 16 1
404 404 16 32 1
405 405 32 16 1
406 406 24 16 268
407 407 16 24 1
408 408 24 16 1
409 409 16 24 1
410 410 25 32 4
411 411 32 16 2
412 412 16 32 1
413 413 32 16 1
414 414 16 32 1
415 415 32 16 1
416 416 21 32 33
417 417 32 21 1
418 418 21 32 1
419 419 21 30 101
420 420 32 16 36
421 421 16 32 1
422 422 32 16 1
423 423 16 32 1
424 424 32 21 18
425 425 21 32 1
426 426 32 21 1
427 427 21 36 27
428 428 36 21 1
429 429 21 36 1
430 430 36 21 1
431 431 21 36 1
432 432 36 21 1
433 433 21 36 1
434 434 30 32 20
435 435 32 30 1
436 436 30 32 1
437 437 32 30 1
438 438 30 32 1
439 439 16 32 2
440 440 32 16 1
441 441 16 32 1
442 442 32 16 1
443 443 24 16 22
444 444 16 24 1
445 445 24 16 1
446 446 16 24 1
447 447 24 16 1
448 448 16 24 1
449 449 34 32 4
450 450 32 34 1
451 451 34 32 1
452 452 12 34 794
453 453 16 15 149
454 454 16 32 3
455 455 12 32 91
456 456 32 12 1
457 457 12 32 1
458 458 32 12 1
459 459 32 34 25
460 460 34 32 1
461 461 29 32 2
462 462 32 29 1
463 463 29 32 1
464 464 32 29 1
465 465 29 32 1
466 466 32 29 1
467 467 32 16 22
468 468 16 32 1
469 469 32 16 1
470 470 16 32 1
471 471 32 16 1
472 472 16 32 1
473 473 28 16 271
474 474 16 28 1
475 475 28 16 1
476 476 28 16 23
477 477 16 28 1
478 478 28 16 1
479 479 15 16 23
480 480 32 16 20
481 481 16 32 1
# Rank on a per-event basis (low is good) Sometimes useful
# to plot the ECDF of the observed ranks....
plot(ecdf(wtcfit6$observed.rank/(37 * 36)), xlab = "Prediction Threshold (Fraction of Possible Events)",
ylab = "Fraction of Observed Events Covered", main = "Classification Accuracy")
abline(v = c(0.05, 0.1, 0.25), col = 2)
As the above indicates, we sometimes (in fact often) manage to get things exactly right: that is, the event predicted most likely to be the next in the sequence is in fact the one that is observed. Examining the match rate is a very strict notion of adequacy, but can be useful for assessing models that are strongly predictive.
$predicted.match #Exactly correct src/target wtcfit6
source recipient
[1,] FALSE FALSE
[2,] TRUE TRUE
[3,] TRUE TRUE
[4,] FALSE FALSE
[5,] FALSE FALSE
[6,] FALSE FALSE
[7,] FALSE FALSE
[8,] FALSE FALSE
[9,] FALSE FALSE
[10,] FALSE FALSE
[11,] TRUE TRUE
[12,] FALSE TRUE
[13,] FALSE FALSE
[14,] FALSE FALSE
[15,] TRUE TRUE
[16,] TRUE TRUE
[17,] TRUE TRUE
[18,] TRUE TRUE
[19,] TRUE TRUE
[20,] FALSE TRUE
[21,] FALSE FALSE
[22,] FALSE FALSE
[23,] FALSE FALSE
[24,] TRUE TRUE
[25,] TRUE TRUE
[26,] TRUE TRUE
[27,] FALSE FALSE
[28,] TRUE TRUE
[29,] TRUE TRUE
[30,] FALSE FALSE
[31,] TRUE TRUE
[32,] TRUE FALSE
[33,] FALSE TRUE
[34,] TRUE TRUE
[35,] TRUE TRUE
[36,] TRUE TRUE
[37,] FALSE FALSE
[38,] TRUE TRUE
[39,] TRUE TRUE
[40,] FALSE TRUE
[41,] FALSE FALSE
[42,] TRUE TRUE
[43,] TRUE TRUE
[44,] FALSE TRUE
[45,] FALSE FALSE
[46,] TRUE TRUE
[47,] TRUE TRUE
[48,] TRUE TRUE
[49,] TRUE TRUE
[50,] TRUE TRUE
[51,] FALSE FALSE
[52,] FALSE FALSE
[53,] FALSE FALSE
[54,] TRUE TRUE
[55,] TRUE TRUE
[56,] TRUE TRUE
[57,] TRUE TRUE
[58,] TRUE TRUE
[59,] FALSE TRUE
[60,] TRUE TRUE
[61,] FALSE TRUE
[62,] TRUE TRUE
[63,] TRUE TRUE
[64,] TRUE TRUE
[65,] FALSE TRUE
[66,] TRUE TRUE
[67,] TRUE TRUE
[68,] FALSE FALSE
[69,] TRUE TRUE
[70,] TRUE TRUE
[71,] TRUE TRUE
[72,] TRUE TRUE
[73,] FALSE FALSE
[74,] TRUE TRUE
[75,] TRUE TRUE
[76,] TRUE TRUE
[77,] FALSE FALSE
[78,] TRUE TRUE
[79,] TRUE TRUE
[80,] TRUE TRUE
[81,] TRUE TRUE
[82,] TRUE TRUE
[83,] FALSE FALSE
[84,] TRUE FALSE
[85,] TRUE TRUE
[86,] TRUE TRUE
[87,] TRUE TRUE
[88,] TRUE TRUE
[89,] FALSE FALSE
[90,] TRUE TRUE
[91,] TRUE TRUE
[92,] TRUE TRUE
[93,] TRUE TRUE
[94,] FALSE TRUE
[95,] TRUE TRUE
[96,] TRUE TRUE
[97,] TRUE FALSE
[98,] TRUE TRUE
[99,] FALSE FALSE
[100,] TRUE TRUE
[101,] TRUE TRUE
[102,] TRUE TRUE
[103,] TRUE TRUE
[104,] TRUE TRUE
[105,] FALSE TRUE
[106,] FALSE FALSE
[107,] TRUE TRUE
[108,] TRUE TRUE
[109,] TRUE TRUE
[110,] FALSE TRUE
[111,] TRUE TRUE
[112,] TRUE TRUE
[113,] TRUE TRUE
[114,] FALSE FALSE
[115,] TRUE TRUE
[116,] TRUE TRUE
[117,] TRUE TRUE
[118,] FALSE FALSE
[119,] FALSE FALSE
[120,] TRUE TRUE
[121,] TRUE TRUE
[122,] TRUE TRUE
[123,] FALSE TRUE
[124,] TRUE TRUE
[125,] FALSE FALSE
[126,] FALSE FALSE
[127,] FALSE FALSE
[128,] TRUE FALSE
[129,] FALSE TRUE
[130,] TRUE TRUE
[131,] TRUE TRUE
[132,] TRUE TRUE
[133,] TRUE TRUE
[134,] FALSE TRUE
[135,] TRUE TRUE
[136,] TRUE TRUE
[137,] TRUE TRUE
[138,] FALSE FALSE
[139,] FALSE FALSE
[140,] FALSE FALSE
[141,] FALSE FALSE
[142,] FALSE FALSE
[143,] TRUE TRUE
[144,] TRUE TRUE
[145,] TRUE TRUE
[146,] FALSE FALSE
[147,] TRUE TRUE
[148,] TRUE TRUE
[149,] TRUE TRUE
[150,] FALSE TRUE
[151,] TRUE TRUE
[152,] TRUE TRUE
[153,] TRUE FALSE
[154,] FALSE TRUE
[155,] TRUE TRUE
[156,] TRUE TRUE
[157,] TRUE TRUE
[158,] TRUE TRUE
[159,] TRUE TRUE
[160,] TRUE TRUE
[161,] TRUE TRUE
[162,] FALSE TRUE
[163,] TRUE TRUE
[164,] TRUE TRUE
[165,] TRUE TRUE
[166,] TRUE TRUE
[167,] FALSE FALSE
[168,] FALSE FALSE
[169,] TRUE FALSE
[170,] TRUE TRUE
[171,] TRUE TRUE
[172,] FALSE TRUE
[173,] TRUE TRUE
[174,] TRUE TRUE
[175,] TRUE TRUE
[176,] FALSE TRUE
[177,] TRUE TRUE
[178,] TRUE TRUE
[179,] TRUE TRUE
[180,] TRUE TRUE
[181,] TRUE TRUE
[182,] TRUE TRUE
[183,] FALSE FALSE
[184,] TRUE TRUE
[185,] TRUE FALSE
[186,] FALSE FALSE
[187,] TRUE TRUE
[188,] TRUE TRUE
[189,] FALSE FALSE
[190,] TRUE TRUE
[191,] FALSE FALSE
[192,] TRUE TRUE
[193,] TRUE TRUE
[194,] TRUE TRUE
[195,] TRUE TRUE
[196,] TRUE TRUE
[197,] TRUE TRUE
[198,] TRUE TRUE
[199,] TRUE TRUE
[200,] TRUE TRUE
[201,] TRUE TRUE
[202,] FALSE TRUE
[203,] TRUE TRUE
[204,] FALSE TRUE
[205,] TRUE TRUE
[206,] TRUE TRUE
[207,] TRUE TRUE
[208,] FALSE TRUE
[209,] TRUE TRUE
[210,] TRUE TRUE
[211,] TRUE FALSE
[212,] TRUE TRUE
[213,] FALSE FALSE
[214,] FALSE TRUE
[215,] TRUE TRUE
[216,] TRUE TRUE
[217,] TRUE TRUE
[218,] TRUE TRUE
[219,] TRUE TRUE
[220,] FALSE FALSE
[221,] TRUE TRUE
[222,] TRUE TRUE
[223,] TRUE TRUE
[224,] TRUE TRUE
[225,] FALSE FALSE
[226,] TRUE TRUE
[227,] TRUE TRUE
[228,] TRUE TRUE
[229,] TRUE FALSE
[230,] TRUE TRUE
[231,] TRUE TRUE
[232,] TRUE TRUE
[233,] TRUE TRUE
[234,] TRUE TRUE
[235,] TRUE TRUE
[236,] TRUE TRUE
[237,] TRUE TRUE
[238,] TRUE TRUE
[239,] TRUE FALSE
[240,] TRUE TRUE
[241,] TRUE TRUE
[242,] TRUE TRUE
[243,] TRUE FALSE
[244,] FALSE FALSE
[245,] FALSE FALSE
[246,] FALSE TRUE
[247,] TRUE TRUE
[248,] TRUE TRUE
[249,] TRUE TRUE
[250,] FALSE FALSE
[251,] TRUE TRUE
[252,] TRUE TRUE
[253,] TRUE TRUE
[254,] TRUE TRUE
[255,] TRUE TRUE
[256,] FALSE FALSE
[257,] TRUE TRUE
[258,] TRUE TRUE
[259,] TRUE TRUE
[260,] FALSE FALSE
[261,] TRUE TRUE
[262,] TRUE TRUE
[263,] TRUE TRUE
[264,] TRUE TRUE
[265,] TRUE TRUE
[266,] TRUE TRUE
[267,] TRUE TRUE
[268,] TRUE TRUE
[269,] FALSE FALSE
[270,] TRUE TRUE
[271,] TRUE TRUE
[272,] TRUE TRUE
[273,] TRUE TRUE
[274,] TRUE TRUE
[275,] TRUE TRUE
[276,] FALSE FALSE
[277,] TRUE TRUE
[278,] TRUE TRUE
[279,] TRUE TRUE
[280,] TRUE TRUE
[281,] TRUE TRUE
[282,] TRUE TRUE
[283,] TRUE TRUE
[284,] TRUE TRUE
[285,] TRUE TRUE
[286,] TRUE TRUE
[287,] TRUE TRUE
[288,] TRUE TRUE
[289,] FALSE FALSE
[290,] TRUE FALSE
[291,] TRUE TRUE
[292,] TRUE TRUE
[293,] TRUE TRUE
[294,] TRUE TRUE
[295,] TRUE TRUE
[296,] TRUE TRUE
[297,] TRUE TRUE
[298,] TRUE TRUE
[299,] TRUE TRUE
[300,] TRUE TRUE
[301,] TRUE TRUE
[302,] TRUE TRUE
[303,] FALSE TRUE
[304,] TRUE TRUE
[305,] TRUE TRUE
[306,] FALSE FALSE
[307,] TRUE TRUE
[308,] TRUE TRUE
[309,] FALSE FALSE
[310,] TRUE TRUE
[311,] TRUE TRUE
[312,] TRUE FALSE
[313,] FALSE TRUE
[314,] TRUE TRUE
[315,] TRUE TRUE
[316,] TRUE TRUE
[317,] FALSE TRUE
[318,] TRUE TRUE
[319,] TRUE TRUE
[320,] TRUE TRUE
[321,] TRUE TRUE
[322,] TRUE TRUE
[323,] TRUE TRUE
[324,] FALSE FALSE
[325,] TRUE TRUE
[326,] FALSE FALSE
[327,] TRUE TRUE
[328,] FALSE FALSE
[329,] TRUE TRUE
[330,] TRUE TRUE
[331,] TRUE TRUE
[332,] FALSE TRUE
[333,] TRUE TRUE
[334,] FALSE FALSE
[335,] TRUE TRUE
[336,] TRUE TRUE
[337,] TRUE TRUE
[338,] TRUE TRUE
[339,] TRUE TRUE
[340,] FALSE FALSE
[341,] TRUE TRUE
[342,] TRUE TRUE
[343,] TRUE TRUE
[344,] FALSE FALSE
[345,] TRUE TRUE
[346,] TRUE TRUE
[347,] FALSE FALSE
[348,] FALSE FALSE
[349,] FALSE FALSE
[350,] TRUE TRUE
[351,] TRUE TRUE
[352,] TRUE TRUE
[353,] FALSE TRUE
[354,] TRUE TRUE
[355,] TRUE TRUE
[356,] TRUE TRUE
[357,] FALSE FALSE
[358,] TRUE TRUE
[359,] FALSE FALSE
[360,] FALSE TRUE
[361,] FALSE FALSE
[362,] TRUE TRUE
[363,] TRUE TRUE
[364,] TRUE TRUE
[365,] TRUE TRUE
[366,] TRUE FALSE
[367,] TRUE TRUE
[368,] TRUE TRUE
[369,] TRUE TRUE
[370,] FALSE FALSE
[371,] FALSE FALSE
[372,] TRUE FALSE
[373,] FALSE FALSE
[374,] FALSE TRUE
[375,] TRUE TRUE
[376,] TRUE TRUE
[377,] TRUE FALSE
[378,] TRUE TRUE
[379,] FALSE FALSE
[380,] TRUE TRUE
[381,] TRUE TRUE
[382,] TRUE TRUE
[383,] FALSE FALSE
[384,] TRUE TRUE
[385,] FALSE FALSE
[386,] TRUE TRUE
[387,] FALSE FALSE
[388,] FALSE FALSE
[389,] TRUE TRUE
[390,] TRUE TRUE
[391,] TRUE TRUE
[392,] TRUE TRUE
[393,] TRUE TRUE
[394,] TRUE TRUE
[395,] FALSE FALSE
[396,] TRUE TRUE
[397,] TRUE TRUE
[398,] TRUE TRUE
[399,] FALSE FALSE
[400,] TRUE TRUE
[401,] FALSE FALSE
[402,] TRUE TRUE
[403,] TRUE TRUE
[404,] TRUE TRUE
[405,] TRUE TRUE
[406,] FALSE FALSE
[407,] TRUE TRUE
[408,] TRUE TRUE
[409,] TRUE TRUE
[410,] FALSE FALSE
[411,] TRUE FALSE
[412,] TRUE TRUE
[413,] TRUE TRUE
[414,] TRUE TRUE
[415,] TRUE TRUE
[416,] FALSE TRUE
[417,] TRUE TRUE
[418,] TRUE TRUE
[419,] FALSE FALSE
[420,] FALSE FALSE
[421,] TRUE TRUE
[422,] TRUE TRUE
[423,] TRUE TRUE
[424,] TRUE FALSE
[425,] TRUE TRUE
[426,] TRUE TRUE
[427,] TRUE FALSE
[428,] TRUE TRUE
[429,] TRUE TRUE
[430,] TRUE TRUE
[431,] TRUE TRUE
[432,] TRUE TRUE
[433,] TRUE TRUE
[434,] FALSE FALSE
[435,] TRUE TRUE
[436,] TRUE TRUE
[437,] TRUE TRUE
[438,] TRUE TRUE
[439,] FALSE FALSE
[440,] TRUE TRUE
[441,] TRUE TRUE
[442,] TRUE TRUE
[443,] FALSE FALSE
[444,] TRUE TRUE
[445,] TRUE TRUE
[446,] TRUE TRUE
[447,] TRUE TRUE
[448,] TRUE TRUE
[449,] FALSE FALSE
[450,] TRUE TRUE
[451,] TRUE TRUE
[452,] FALSE TRUE
[453,] FALSE FALSE
[454,] FALSE FALSE
[455,] FALSE FALSE
[456,] TRUE TRUE
[457,] TRUE TRUE
[458,] TRUE TRUE
[459,] FALSE FALSE
[460,] TRUE TRUE
[461,] FALSE FALSE
[462,] TRUE TRUE
[463,] TRUE TRUE
[464,] TRUE TRUE
[465,] TRUE TRUE
[466,] TRUE TRUE
[467,] FALSE FALSE
[468,] TRUE TRUE
[469,] TRUE TRUE
[470,] TRUE TRUE
[471,] TRUE TRUE
[472,] TRUE TRUE
[473,] FALSE TRUE
[474,] TRUE TRUE
[475,] TRUE TRUE
[476,] FALSE FALSE
[477,] TRUE TRUE
[478,] TRUE TRUE
[479,] FALSE FALSE
[480,] FALSE FALSE
[481,] TRUE TRUE
mean(apply(wtcfit6$predicted.match, 1, any)) #Fraction for which something is right
[1] 0.7941788
mean(apply(wtcfit6$predicted.match, 1, all)) #Fraction entirely right
[1] 0.6839917
colMeans(wtcfit6$predicted.match) #Fraction src/target, respectively
source recipient
0.7234927 0.7546778
Despite its simplicity, this model seems to fit extremely well. Further improvement is possible, but for many purposes we might view it as an adequate representation of the event dynamics in this WTC police network.
In addition to fitting REMs, relevent
has tools for simulating from them. These work a bit like the simulate
commands in the ergm
library, in that they can be used in two modes: we can simulate draws from a fitted rem.dyad
model; or we can simulate draws from an a priori specified model. For now, let’s consider this first case.
The syntax for the rem.dyad
simulate
method is as follows:
simulate(object, nsim = object$m, seed = NULL, coef = NULL, covar = NULL,
verbose = FALSE, ...)
object
here is our fitted model object, nsim
is the number of events to draw from the model (the length of the event series to simulate), seed
is an optional random number seed to specify, coef
is a (here optional) coefficient vector, covar
is our usual covariate list, and verbose
says whether we want to print tracking information. By default, the coefficients used are taken from the fitted model, but specifying coef
will allow them to be overridden (a useful tool for performing scenario analyses, as illustrated below). Likewise, the function will by default simulate as many events as were in the original data, but this can be altered by changing nsim
. Note that we do have to specify any covariates being used when simulating, both because rem.dyad
does not save the input covariates, and because (even if it did) the size of the covariate set in some cases depends on the number of events to be produced.
Let’s begin with the most basic use case: simulating a synthetic replicate of our original data, using our final model. For this, we only need pass our model, and the covariates used:
set.seed(1331)
<- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR),
simwtc verbose = TRUE)
Working on event 25 of 481
Working on event 50 of 481
Working on event 75 of 481
Working on event 100 of 481
Working on event 125 of 481
Working on event 150 of 481
Working on event 175 of 481
Working on event 200 of 481
Working on event 225 of 481
Working on event 250 of 481
Working on event 275 of 481
Working on event 300 of 481
Working on event 325 of 481
Working on event 350 of 481
Working on event 375 of 481
Working on event 400 of 481
Working on event 425 of 481
Working on event 450 of 481
Working on event 475 of 481
We now have a simulated event sequence from the wtcfit6
model! Let’s see what it looks like:
simwtc
[,1] [,2] [,3]
[1,] 0.0004468037 27 13
[2,] 0.0004626364 13 27
[3,] 0.0004704296 27 13
[4,] 0.0004819716 13 27
[5,] 0.0004923628 27 13
[6,] 0.0005274594 13 27
[7,] 0.0005329692 27 13
[8,] 0.0005379387 13 27
[9,] 0.0005687593 27 13
[10,] 0.0006085596 13 27
[11,] 0.0006466945 27 13
[12,] 0.0006974054 13 27
[13,] 0.0007084274 27 13
[14,] 0.0007339464 13 27
[15,] 0.0007466830 27 13
[16,] 0.0007492684 13 27
[17,] 0.0007884910 27 13
[18,] 0.0008027626 13 27
[19,] 0.0008181866 27 13
[20,] 0.0008316953 13 27
[21,] 0.0008386961 27 13
[22,] 0.0008486558 13 27
[23,] 0.0008972992 27 13
[24,] 0.0009089349 13 27
[25,] 0.0009255863 27 13
[26,] 0.0009356596 13 27
[27,] 0.0009481630 27 13
[28,] 0.0009701589 13 27
[29,] 0.0010908132 27 13
[30,] 0.0011515705 13 27
[31,] 0.0011593256 27 13
[32,] 0.0012039064 13 27
[33,] 0.0012429321 27 13
[34,] 0.0012671529 13 27
[35,] 0.0012826756 27 13
[36,] 0.0012830967 13 27
[37,] 0.0012937788 27 13
[38,] 0.0013168741 13 27
[39,] 0.0013233227 27 13
[40,] 0.0013545029 13 27
[41,] 0.0013680710 27 13
[42,] 0.0014074783 13 27
[43,] 0.0014247736 27 13
[44,] 0.0014539617 13 27
[45,] 0.0015243130 27 13
[46,] 0.0015514804 13 27
[47,] 0.0015694450 27 13
[48,] 0.0015723410 14 7
[49,] 0.0016150099 7 14
[50,] 0.0019005500 14 7
[51,] 0.0019436756 14 1
[52,] 0.0026720080 10 15
[53,] 0.0027797172 15 27
[54,] 0.0028284341 27 13
[55,] 0.0028393713 13 27
[56,] 0.0028778679 27 13
[57,] 0.0028872755 13 27
[58,] 0.0029061584 27 13
[59,] 0.0029642798 13 27
[60,] 0.0029984286 27 13
[61,] 0.0030100941 13 27
[62,] 0.0030511743 13 10
[63,] 0.0031090747 10 13
[64,] 0.0032220014 13 10
[65,] 0.0032321834 10 13
[66,] 0.0032814074 13 10
[67,] 0.0032917877 10 13
[68,] 0.0033707924 19 13
[69,] 0.0034818303 13 19
[70,] 0.0034824403 19 13
[71,] 0.0034995468 13 19
[72,] 0.0035038253 19 13
[73,] 0.0036111933 13 19
[74,] 0.0036167921 19 13
[75,] 0.0036274954 13 19
[76,] 0.0036565886 19 13
[77,] 0.0037396416 13 19
[78,] 0.0037581215 19 13
[79,] 0.0037626692 13 19
[80,] 0.0038189895 19 13
[81,] 0.0039261296 13 19
[82,] 0.0039629416 19 13
[83,] 0.0040927937 13 19
[84,] 0.0040931659 19 13
[85,] 0.0041057205 13 19
[86,] 0.0041215237 19 13
[87,] 0.0041289060 13 19
[88,] 0.0041427540 19 13
[89,] 0.0042120058 13 32
[90,] 0.0042217469 32 13
[91,] 0.0042779792 13 32
[92,] 0.0042783691 32 13
[93,] 0.0042967961 13 32
[94,] 0.0043393798 32 13
[95,] 0.0044448139 1 13
[96,] 0.0047968571 27 13
[97,] 0.0048509175 13 27
[98,] 0.0048628324 27 13
[99,] 0.0049557731 13 27
[100,] 0.0049983478 27 13
[101,] 0.0050064210 13 27
[102,] 0.0050738154 27 13
[103,] 0.0050807748 13 27
[104,] 0.0051075841 27 13
[105,] 0.0051297579 13 27
[106,] 0.0051722808 27 13
[107,] 0.0052835190 13 27
[108,] 0.0052870784 27 13
[109,] 0.0053668581 13 27
[110,] 0.0053920783 27 13
[111,] 0.0053967363 13 27
[112,] 0.0053997402 27 13
[113,] 0.0054173586 13 27
[114,] 0.0054407510 27 13
[115,] 0.0054852012 13 27
[116,] 0.0054943325 27 13
[117,] 0.0055459602 13 27
[118,] 0.0055745360 27 13
[119,] 0.0055822403 13 27
[120,] 0.0055973214 22 19
[121,] 0.0056548129 7 16
[122,] 0.0056565788 7 32
[123,] 0.0057062083 32 7
[124,] 0.0058585216 7 32
[125,] 0.0058586075 19 27
[126,] 0.0060430931 19 8
[127,] 0.0062320168 34 9
[128,] 0.0064461396 9 34
[129,] 0.0064966543 34 9
[130,] 0.0065614709 20 13
[131,] 0.0067258558 13 20
[132,] 0.0067578992 20 13
[133,] 0.0068017039 13 20
[134,] 0.0068169630 20 13
[135,] 0.0068175624 13 20
[136,] 0.0068193397 20 13
[137,] 0.0072490044 13 36
[138,] 0.0073217121 36 13
[139,] 0.0073334597 8 14
[140,] 0.0075354950 37 19
[141,] 0.0080144331 19 37
[142,] 0.0081275564 37 19
[143,] 0.0082557472 19 34
[144,] 0.0084110211 23 13
[145,] 0.0084193289 13 3
[146,] 0.0084699771 3 13
[147,] 0.0084824263 13 3
[148,] 0.0084888060 3 13
[149,] 0.0085827044 13 3
[150,] 0.0086069546 3 13
[151,] 0.0087828754 35 34
[152,] 0.0089764399 7 32
[153,] 0.0091843698 36 13
[154,] 0.0091999499 34 13
[155,] 0.0095757106 13 34
[156,] 0.0095844329 34 13
[157,] 0.0096696525 13 34
[158,] 0.0097051669 34 13
[159,] 0.0097855885 12 25
[160,] 0.0098027334 25 12
[161,] 0.0098266272 36 13
[162,] 0.0099684145 13 36
[163,] 0.0100833313 36 13
[164,] 0.0101338267 13 36
[165,] 0.0101348239 36 13
[166,] 0.0101359467 13 36
[167,] 0.0101362191 36 13
[168,] 0.0102493044 34 13
[169,] 0.0103154513 13 34
[170,] 0.0103373302 34 13
[171,] 0.0103488010 13 34
[172,] 0.0103762942 34 14
[173,] 0.0103797922 14 34
[174,] 0.0104068124 34 14
[175,] 0.0104986952 22 9
[176,] 0.0105404043 9 5
[177,] 0.0105561202 32 6
[178,] 0.0111850713 6 32
[179,] 0.0112744103 32 6
[180,] 0.0114502326 6 32
[181,] 0.0115323225 17 32
[182,] 0.0115771768 32 17
[183,] 0.0116842357 17 32
[184,] 0.0117025056 8 21
[185,] 0.0118103774 21 8
[186,] 0.0118195334 36 27
[187,] 0.0118529176 36 13
[188,] 0.0119964152 13 34
[189,] 0.0119970463 34 13
[190,] 0.0121343097 25 18
[191,] 0.0121393541 18 12
[192,] 0.0121894911 11 12
[193,] 0.0123057317 7 32
[194,] 0.0125862653 32 14
[195,] 0.0125951325 14 32
[196,] 0.0126633993 6 20
[197,] 0.0128275452 25 18
[198,] 0.0132555874 9 6
[199,] 0.0132829924 3 13
[200,] 0.0134291797 13 3
[201,] 0.0134839250 36 13
[202,] 0.0135437241 17 32
[203,] 0.0136436859 14 13
[204,] 0.0138417808 13 14
[205,] 0.0138438436 14 13
[206,] 0.0139496983 13 14
[207,] 0.0139804105 14 13
[208,] 0.0139867101 13 3
[209,] 0.0140538554 3 13
[210,] 0.0140623522 14 13
[211,] 0.0144145074 13 14
[212,] 0.0144300583 14 13
[213,] 0.0144495393 13 14
[214,] 0.0144640101 14 13
[215,] 0.0145017675 13 14
[216,] 0.0145029065 14 13
[217,] 0.0145118892 13 14
[218,] 0.0145119799 14 13
[219,] 0.0145319757 13 14
[220,] 0.0145356656 14 13
[221,] 0.0145938309 13 14
[222,] 0.0145953910 14 13
[223,] 0.0146065494 13 14
[224,] 0.0146465414 14 13
[225,] 0.0146650814 13 14
[226,] 0.0147036141 14 13
[227,] 0.0147131970 13 14
[228,] 0.0147587784 14 7
[229,] 0.0147680641 7 14
[230,] 0.0150733724 14 7
[231,] 0.0151593357 7 14
[232,] 0.0151611710 14 7
[233,] 0.0153084748 7 14
[234,] 0.0154132807 14 7
[235,] 0.0154630777 7 14
[236,] 0.0154683221 14 7
[237,] 0.0158290645 7 21
[238,] 0.0159298305 3 13
[239,] 0.0162762060 13 3
[240,] 0.0163345342 36 27
[241,] 0.0164640857 27 17
[242,] 0.0165578255 17 27
[243,] 0.0166365557 34 32
[244,] 0.0167307934 8 9
[245,] 0.0169132378 12 14
[246,] 0.0169183300 14 12
[247,] 0.0170049911 14 32
[248,] 0.0170258017 32 14
[249,] 0.0171313114 14 32
[250,] 0.0172037762 32 14
[251,] 0.0172433585 14 32
[252,] 0.0172553879 32 14
[253,] 0.0172588611 14 32
[254,] 0.0173394862 32 14
[255,] 0.0174859626 14 32
[256,] 0.0176055582 32 14
[257,] 0.0176171270 14 32
[258,] 0.0176355362 32 14
[259,] 0.0176363935 14 5
[260,] 0.0178551334 30 25
[261,] 0.0179038950 24 3
[262,] 0.0179614194 3 13
[263,] 0.0179934496 13 3
[264,] 0.0180305562 3 13
[265,] 0.0180429826 13 3
[266,] 0.0181813990 3 13
[267,] 0.0184782112 13 3
[268,] 0.0184845257 3 13
[269,] 0.0184972931 13 3
[270,] 0.0184988381 3 13
[271,] 0.0185055835 5 3
[272,] 0.0187918703 3 5
[273,] 0.0189023380 5 3
[274,] 0.0192145339 10 13
[275,] 0.0192505119 13 10
[276,] 0.0192688164 10 13
[277,] 0.0194784700 13 10
[278,] 0.0194887055 10 13
[279,] 0.0195002589 13 10
[280,] 0.0195378886 24 19
[281,] 0.0195719270 19 24
[282,] 0.0197782877 24 19
[283,] 0.0199081399 19 24
[284,] 0.0199500499 24 19
[285,] 0.0200982621 19 24
[286,] 0.0201604849 24 19
[287,] 0.0201623909 29 16
[288,] 0.0207869265 24 30
[289,] 0.0210273823 17 32
[290,] 0.0210622094 32 17
[291,] 0.0210828177 17 32
[292,] 0.0210952799 32 17
[293,] 0.0211329742 17 32
[294,] 0.0212798099 33 13
[295,] 0.0213271748 23 8
[296,] 0.0217965561 8 23
[297,] 0.0218333451 35 13
[298,] 0.0219790161 13 35
[299,] 0.0220608700 35 13
[300,] 0.0220865325 13 35
[301,] 0.0221579996 35 13
[302,] 0.0221665057 13 35
[303,] 0.0221694770 35 13
[304,] 0.0222068295 13 35
[305,] 0.0222089476 35 13
[306,] 0.0222403138 2 29
[307,] 0.0234768654 3 26
[308,] 0.0235433131 26 3
[309,] 0.0235718983 30 25
[310,] 0.0235745080 25 30
[311,] 0.0236604752 36 33
[312,] 0.0236673650 12 32
[313,] 0.0237699227 20 13
[314,] 0.0238429724 13 6
[315,] 0.0238765913 6 13
[316,] 0.0239138184 13 6
[317,] 0.0239983935 6 13
[318,] 0.0240305942 13 6
[319,] 0.0240332831 6 13
[320,] 0.0240570483 13 6
[321,] 0.0240782348 6 13
[322,] 0.0243157822 13 6
[323,] 0.0243718095 6 13
[324,] 0.0245154986 13 6
[325,] 0.0245408016 6 13
[326,] 0.0245484075 36 13
[327,] 0.0246745553 15 11
[328,] 0.0248603057 11 15
[329,] 0.0248915044 15 11
[330,] 0.0249525354 36 13
[331,] 0.0249679222 13 36
[332,] 0.0249824936 36 13
[333,] 0.0250038384 13 36
[334,] 0.0250310561 21 28
[335,] 0.0252419895 8 20
[336,] 0.0256013782 23 6
[337,] 0.0256986586 23 37
[338,] 0.0258426315 17 27
[339,] 0.0259477008 27 17
[340,] 0.0259488346 17 27
[341,] 0.0264904810 12 13
[342,] 0.0265228323 13 12
[343,] 0.0265818586 12 13
[344,] 0.0266614791 3 29
[345,] 0.0267612879 37 14
[346,] 0.0268845282 14 37
[347,] 0.0268879410 37 14
[348,] 0.0269286951 14 37
[349,] 0.0269360987 17 8
[350,] 0.0278964313 8 17
[351,] 0.0280965622 17 8
[352,] 0.0281559894 8 17
[353,] 0.0285467025 7 30
[354,] 0.0285679680 35 13
[355,] 0.0285992706 13 35
[356,] 0.0286171731 12 13
[357,] 0.0290322462 13 12
[358,] 0.0291357775 12 13
[359,] 0.0292442472 13 12
[360,] 0.0293683509 12 13
[361,] 0.0294945847 31 14
[362,] 0.0297095420 14 31
[363,] 0.0298376288 10 13
[364,] 0.0300455648 13 10
[365,] 0.0301098914 10 13
[366,] 0.0301205515 13 17
[367,] 0.0302045260 6 8
[368,] 0.0303020063 8 6
[369,] 0.0303115736 6 8
[370,] 0.0303131548 12 13
[371,] 0.0304611127 29 3
[372,] 0.0305443493 3 29
[373,] 0.0306824416 18 19
[374,] 0.0307545805 7 32
[375,] 0.0308680382 34 12
[376,] 0.0309930164 12 34
[377,] 0.0310660670 34 12
[378,] 0.0311366483 11 15
[379,] 0.0312986455 15 11
[380,] 0.0313265905 11 15
[381,] 0.0315919665 18 33
[382,] 0.0316031926 25 35
[383,] 0.0317072933 12 14
[384,] 0.0317276933 14 12
[385,] 0.0317654474 37 14
[386,] 0.0317947481 14 37
[387,] 0.0318287418 37 14
[388,] 0.0318921662 14 37
[389,] 0.0318968926 37 14
[390,] 0.0319175580 14 37
[391,] 0.0319322160 37 14
[392,] 0.0320606608 14 37
[393,] 0.0320616085 37 14
[394,] 0.0321529979 14 37
[395,] 0.0321957646 37 14
[396,] 0.0321971338 14 37
[397,] 0.0322595826 37 14
[398,] 0.0323020918 14 37
[399,] 0.0323578791 14 37
[400,] 0.0324794185 37 14
[401,] 0.0326005639 14 37
[402,] 0.0326094972 37 14
[403,] 0.0326346587 10 13
[404,] 0.0326597675 13 10
[405,] 0.0329174443 10 13
[406,] 0.0329720175 13 10
[407,] 0.0329972634 10 13
[408,] 0.0330169686 13 10
[409,] 0.0330238595 10 13
[410,] 0.0330583838 13 10
[411,] 0.0330733903 10 13
[412,] 0.0331370941 8 32
[413,] 0.0331712022 18 19
[414,] 0.0332798127 25 5
[415,] 0.0333958429 5 25
[416,] 0.0334240615 20 3
[417,] 0.0337391463 20 31
[418,] 0.0338543647 20 33
[419,] 0.0338626429 37 14
[420,] 0.0338645933 14 37
[421,] 0.0339029735 35 18
[422,] 0.0339429072 25 6
[423,] 0.0341417597 25 5
[424,] 0.0341505568 10 13
[425,] 0.0343134234 13 10
[426,] 0.0343159246 10 13
[427,] 0.0343269309 13 10
[428,] 0.0343773935 10 11
[429,] 0.0344291153 11 10
[430,] 0.0345942722 9 23
[431,] 0.0346363570 27 17
[432,] 0.0348390728 17 13
[433,] 0.0350104630 13 17
[434,] 0.0350182571 17 13
[435,] 0.0350464506 3 16
[436,] 0.0351329807 36 13
[437,] 0.0353440397 13 36
[438,] 0.0353784253 36 13
[439,] 0.0354021825 13 36
[440,] 0.0354351635 36 13
[441,] 0.0354445648 13 36
[442,] 0.0355089888 36 13
[443,] 0.0356242373 13 36
[444,] 0.0357127231 36 13
[445,] 0.0357545729 13 36
[446,] 0.0357551812 36 13
[447,] 0.0358335873 13 36
[448,] 0.0358677577 36 13
[449,] 0.0358935651 7 32
[450,] 0.0359377294 32 7
[451,] 0.0361369745 7 14
[452,] 0.0363378629 36 13
[453,] 0.0365084978 13 36
[454,] 0.0365349384 9 28
[455,] 0.0370825032 12 14
[456,] 0.0373067617 14 12
[457,] 0.0373914832 12 14
[458,] 0.0374009173 14 12
[459,] 0.0374550646 12 14
[460,] 0.0375279412 14 12
[461,] 0.0376051357 12 14
[462,] 0.0376379638 14 12
[463,] 0.0376565493 12 13
[464,] 0.0377125076 33 13
[465,] 0.0377720364 13 33
[466,] 0.0378468163 33 13
[467,] 0.0383414905 13 33
[468,] 0.0384142787 33 13
[469,] 0.0385017966 10 33
[470,] 0.0387486731 13 7
[471,] 0.0390431513 32 20
[472,] 0.0391026633 20 32
[473,] 0.0392090763 32 20
[474,] 0.0392492668 20 32
[475,] 0.0393944209 32 20
[476,] 0.0394789163 20 32
[477,] 0.0395283323 32 20
[478,] 0.0396423849 32 23
[479,] 0.0399125690 23 32
[480,] 0.0399974986 20 32
[481,] 0.0400171875 1 13
attr(,"n")
[1] 37
As we can see, we now have an event list that looks just like our original data (but that is synthetic). Such synthetic replicates can be used for many purposes, including exploratory simulation, model adequacy checking, and aiding in model interpretation. For instance, let’s perform a very small simulation study to look at the relationship between occupying an ICR and betweenness, and probe the role of the AB-BA P-shift term in impacting that relationship. We’ll do this by simulating data first from our ICR-only model, then our final model, and lastly a version of the final model with the P-shift term zeroed out. This is called an in silico “knock-out” experiment, and can be useful for understanding the role that specific effects play in generating aggregate outcomes.
set.seed(1331)
<- 6 #Number of replicate series to take
reps <- wtcfit6$coef #Knock-out coefs
kocoef "PSAB-BA"] <- 0
kocoef[<- matrix(nrow = reps, ncol = 3)
ICRBetCor for (i in 1:reps) {
print(i)
<- simulate(wtcfit1, covar = list(CovInt = WTCPoliceIsICR)) #ICR only
simwtc 1] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,
ICRBetCor[i, 37)), WTCPoliceIsICR)
<- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR)) #Final
simwtc 2] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,
ICRBetCor[i, 37)), WTCPoliceIsICR)
<- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR),
simwtc coef = kocoef) #Knockout
3] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,
ICRBetCor[i, 37)), WTCPoliceIsICR)
}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
boxplot(ICRBetCor, names = c("ICROnly", "Full", "NoABBA"))
abline(h = cor(betweenness(as.sociomatrix.eventlist(WTCPoliceCalls,
37)), WTCPoliceIsICR), col = 2)
We can see here that (perhaps unsurprisingly) the ICR-only model overstates the relationship between occupying an ICR and having high betweenness; our full model does much better, generally producing realizations that cover the observed data (though, with only a few replicates, you may find that it sometimes doesn’t!). What happens when we “turn off” the AB-BA shift? It turns out that this greatly increases the relative betweenness of ICRs, telling us that the AB-BA shifts are helping to play a role in keeping ICRs from inappropriately dominating the network. Why should turn taking matter here? The short answer is that turn-taking effects create opportunities for non-ICR responders to gain airtime, and end up as emergent coordinators. Taking out the AB-BA effect reduces emergent coordination, which in turn increases the relative centrality of the few individuals in institutionalized coordinative roles.
rem.dyad
: Exact TimingIn the previous section, we considered dyadic relational event models in the case for which only ordinal timing information is available. We now proceed to the case of exact timing, in which we know the time at which each event occurs (relative to the onset of observation, which is treated as time 0).
For this section, we will make use of data collected by Dan McFarland (and published in Bender-deMoll and McFarland, 2006) on interaction among students and instructors within a high school classroom. (Note that the data employed here has been slightly modified from the original for illustrative purposes, in that small timing adjustments have been made to separate closely spaced events; those interested in using it for purposes other than practice are directed to the above paper in the Journal of Social Structure.) To see the event data itself, we may print it as follows:
head(Class)
StartTime FromId ToId
1 0.135 14 12
2 0.270 12 14
3 0.405 18 12
4 0.540 12 18
5 0.675 1 12
6 0.810 12 1
tail(Class)
StartTime FromId ToId
687 50.426 1 3
688 50.547 3 1
689 50.668 6 17
690 50.789 6 17
691 50.910 17 6
692 50.920 NA NA
As before, we have three columns: the event time, the event source (numbered from 1 to 20), and the event target (again, numbered 1 to 20). In this case, event time is given in increments of minutes from onset of observation. Note that the last row of the event list contains the time at which observation was terminated; it (and only it!) is allowed to contain NAs
, since it has no meaning except to set the period during which events could have occurred. Where exact timing is used, the final entry in the edgelist is always interpreted in this way, and any source/target information on this row is ignored.
In addition to the Class
edgelist, we also observe the covariates ClassIsTeacher
(an indicator for instructor role) and ClassIsFemale
(an indicator for gender). Visualizing the data in time-aggregate form gives us the following:
<- as.sociomatrix.eventlist(Class, 20)
ClassNet gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
vertex.cex = 2, edge.lwd = ClassNet^0.75) ClassIsTeacher,
A dynamic visualization for this data is also available in the above-cited paper, and is well worth examining! (The ndtv
package in statnet
can be used to produce visualizations of this kind.)
We begin our investigation of classroom dynamics with a trivial intercept model, containing only a vector of 1s (ClassIntercept
) as a sending effect:
<- rem.dyad(Class, n = 20, effects = c("CovSnd"), covar = list(CovSnd = ClassIntercept),
classfit1 ordinal = FALSE, hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit1)
Relational Event Model (Temporal Likelihood)
Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 -3.332287 0.038042 -87.596 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 5987.221 on 691 degrees of freedom
Chi-square: -3.728928e-11 on 0 degrees of freedom, asymptotic p-value 1
AIC: 5989.221 AICC: 5989.227 BIC: 5993.759
Note that we must tell rem.dyad
that we do not want to discard timing information (ordinal=FALSE
). The model does not fit any better than the null because it is equivalent to the null model (but you must supply your own intercept, regardless!). As one would expect from first principles, this is really just an exponential waiting time model, calibrated to the observed communication rate:
$m - 1)/max(Class[, 1]) #Events per minute (on average) (classfit1
[1] 13.57031
20 * 19 * exp(classfit1$coef) #Predicted events per minute (matches well!)
CovSnd.1
13.57031
To make things more interesting, let’s add effects for role and gender:
<- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec"),
classfit2 covar = list(CovSnd = cbind(ClassIntercept, ClassIsTeacher,
CovRec = cbind(ClassIsTeacher, ClassIsFemale)),
ClassIsFemale), ordinal = FALSE, hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit2)
Relational Event Model (Temporal Likelihood)
Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 -3.834216 0.078841 -48.6320 < 2.2e-16 ***
CovSnd.2 1.672539 0.091679 18.2434 < 2.2e-16 ***
CovSnd.3 0.123880 0.094931 1.3049 0.191911
CovRec.1 0.373750 0.127027 2.9423 0.003258 **
CovRec.2 0.165734 0.080896 2.0487 0.040488 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 5652.318 on 687 degrees of freedom
Chi-square: 334.9034 on 4 degrees of freedom, asymptotic p-value 0
AIC: 5662.318 AICC: 5662.405 BIC: 5685.008
$BIC - classfit2$BIC #Model is preferred classfit1
[1] 308.7508
Note that covariate effects correspond to the order in which they were specified within the covar argument. It doesn’t look here like gender affects propensity to send; given this, we might wonder whether dropping it gives us a better model.
<- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec"),
classfit3 covar = list(CovSnd = cbind(ClassIntercept, ClassIsTeacher),
CovRec = cbind(ClassIsTeacher, ClassIsFemale)), ordinal = FALSE,
hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit3)
Relational Event Model (Temporal Likelihood)
Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 -3.775222 0.063622 -59.3380 < 2.2e-16 ***
CovSnd.2 1.615759 0.079933 20.2139 < 2.2e-16 ***
CovRec.1 0.371765 0.127019 2.9268 0.003424 **
CovRec.2 0.161158 0.080815 1.9942 0.046135 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 5654.016 on 688 degrees of freedom
Chi-square: 333.2049 on 3 degrees of freedom, asymptotic p-value 0
AIC: 5662.016 AICC: 5662.074 BIC: 5680.169
$BIC - classfit3$BIC #Reduced model is indeed preferred classfit2
[1] 4.83966
One use of a fitted relational event model is to consider the inter-event times predicted to be observed under various scenarios. For this purpose, it is useful to remember that, under the piecewise constant hazard assumption, event waiting times are conditionally exponentially distributed. This allows us to easily work out the consequences of various model effects for social dynamics, at least within the context of a particular scenario.
In interpreting coefficient effects, recall that they act as logged hazard multipliers. For instance:
exp(classfit6$coef["PSAB-BA"]) #Response events have apx 100 times the hazard of other events
PSAB-BA
101.8686
Remember, however, that the fact that an event has an unusually high hazard does not mean that it will necessarily occur. For instance, while a response of B to a communication from A has a hazard that is (ceteris paribus) about 100 times as great as the hazard of a non B\(\to\)A event, there are many more events of the latter type. Here, indeed, there are 379 other events “competing” with the B\(\to\)A response, and thus the chance that the latter will occur next is smaller than it may appear. Both relative rates and combinatorics (i.e., the number of possible ways that an event type may occur) govern the result.
One basic use of the model coefficients is to examine the expected inter-event times under specific scenarios. E.g.:
# Mean inter-event time if nothing else going on....
1/(20 * 19 * exp(classfit6$coef["CovSnd.1"]))
CovSnd.1
0.3843301
# Mean teacher-student time (again, if nothing else
# happened)
1/(2 * 18 * exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2")])))
[1] 1.153853
# Sequential address by teacher w/out prior interaction,
# given a prior teacher-student interaction, and assuming
# nothing else happened
1/(17 * exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2", "PSAB-AY")])))
[1] 0.1384696
# Teacher responding to a specific student, given an
# immediate event
1/(exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2", "PSAB-BA",
"RRecSnd")])))
[1] 0.03587354
# Student responding to a specific teacher, given an
# immediate event
1/(exp(sum(classfit6$coef[c("CovSnd.1", "CovRec.1", "PSAB-BA",
"RRecSnd")])))
[1] 0.2657116
Again, the number of ways that an event type can occur and the propensity of such events to occur both matter!
Model adequacy assessment in the exact timing case is much like that of the ordinal case. We cannot here use a fixed null residual or guessing equivalent, but can still look at “surprise” based on deviance residuals:
# Where is the model 'surprised'? Can't use null residual
# trick, but can see what the distribution looks like
hist(classfit6$residuals) #Deviance residuals - lumpier by far, most smallish
The fit here doesn’t seem to be as good as it was for the WTC police data. Let’s look at classification:
mean(apply(classfit6$predicted.match, 1, all)) #Exactly right about 33%
[1] 0.3299566
mean(apply(classfit6$predicted.match, 1, any)) #Get one party exactly right 52%
[1] 0.5166425
colMeans(classfit6$predicted.match) #Better at sender than receiver!
FromId ToId
0.5050651 0.3415340
$observed.rank classfit6
[1] 1 1 58 1 77 1 39 1 3 4 4 4 4 4 19 4 4 4
[19] 4 3 3 4 4 1 3 4 4 54 3 3 3 3 3 3 3 3
[37] 3 3 3 2 2 3 3 3 3 3 92 1 5 1 4 1 4 1
[55] 4 1 40 1 65 6 11 9 20 7 8 4 10 99 1 1 1 59
[73] 3 3 14 14 3 3 3 12 3 10 3 2 2 3 3 3 3 3
[91] 23 1 3 4 4 4 4 4 4 4 4 4 4 4 3 3 4 1
[109] 3 4 4 374 1 110 1 59 4 4 4 4 4 4 4 4 4 4
[127] 4 3 3 4 1 3 4 4 106 1 123 1 60 4 4 4 4 4
[145] 4 4 4 4 4 4 3 3 4 1 3 4 4 111 8 8 5 7
[163] 2 10 8 6 7 3 7 7 14 8 8 8 8 8 122 1 125 1
[181] 115 1 130 1 86 2 10 1 29 1 47 1 115 1 110 1 48 1
[199] 1 1 61 1 36 1 8 1 8 1 130 1 1 1 133 1 50 1
[217] 89 1 98 2 4 2 33 1 119 1 94 1 51 1 122 1 2 1
[235] 2 1 50 1 117 1 51 1 3 1 131 1 88 1 27 1 32 1
[253] 74 1 53 1 119 1 121 1 52 1 52 1 91 1 128 1 54 1
[271] 92 1 2 1 94 1 92 1 120 1 128 1 53 1 52 1 25 1
[289] 24 1 94 1 92 1 52 1 92 1 52 1 113 1 70 9 9 8
[307] 8 3 8 9 9 1 8 9 19 4 4 4 8 9 6 55 10 10
[325] 4 4 10 2 10 7 3 9 6 10 11 11 10 9 9 9 113 1
[343] 129 1 368 1 120 1 371 1 110 1 24 1 51 1 9 2 10 2
[361] 49 1 119 1 123 1 108 1 120 1 118 1 129 1 4 1 55 1
[379] 94 89 1 13 1 32 1 74 1 4 1 58 1 111 1 103 92 1
[397] 4 1 97 1 58 1 56 1 128 1 1 1 19 1 2 2 4 2
[415] 379 1 369 1 92 1 127 1 52 1 112 1 79 1 32 1 30 1
[433] 72 1 53 1 2 1 133 1 92 1 113 1 52 1 53 1 54 1
[451] 54 1 73 1 31 1 34 1 70 1 138 1 116 1 127 1 55 1
[469] 3 1 2 1 91 1 55 1 91 1 83 1 15 1 35 1 70 1
[487] 116 1 54 1 89 1 114 1 3 1 114 1 83 1 17 1 21 1
[505] 20 1 64 1 12 2 20 1 98 1 53 1 53 1 44 2 8 2
[523] 9 2 66 1 114 1 86 1 88 1 109 1 112 1 78 2 19 1
[541] 19 1 47 1 88 1 110 1 89 1 119 1 77 2 19 2 19 2
[559] 94 1 2 1 112 52 1 121 1 2 1 134 1 87 1 125 1 53
[577] 1 72 1 18 1 17 1 18 1 5 1 53 1 125 123 1 90 1
[595] 111 1 77 2 19 1 20 2 48 1 86 1 54 1 88 1 112 1
[613] 1 1 89 1 114 1 132 2 1 80 1 14 2 19 2 72 1 89
[631] 1 53 1 54 1 54 1 89 1 3 1 45 2 8 2 8 2 10
[649] 2 106 1 122 52 1 91 1 53 1 115 1 53 1 91 1 47 2
[667] 2 17 17 13 12 6 13 5 9 5 10 10 19 2 8 7 4 15
[685] 8 59 22 1 142 380 1
cbind(Class, c(classfit6$observed.rank, NA))
StartTime FromId ToId c(classfit6$observed.rank, NA)
1 0.135 14 12 1
2 0.270 12 14 1
3 0.405 18 12 58
4 0.540 12 18 1
5 0.675 1 12 77
6 0.810 12 1 1
7 0.945 14 17 39
8 1.080 17 14 1
9 1.257 14 1 3
10 1.267 14 2 4
11 1.277 14 3 4
12 1.287 14 4 4
13 1.297 14 5 4
14 1.307 14 6 4
15 1.317 14 7 19
16 1.327 14 8 4
17 1.337 14 9 4
18 1.347 14 10 4
19 1.357 14 11 4
20 1.367 14 12 3
21 1.377 14 13 3
22 1.387 14 15 4
23 1.397 14 16 4
24 1.407 14 17 1
25 1.417 14 18 3
26 1.427 14 19 4
27 1.437 14 20 4
28 1.613 7 1 54
29 1.623 7 2 3
30 1.633 7 3 3
31 1.643 7 4 3
32 1.653 7 5 3
33 1.663 7 6 3
34 1.673 7 8 3
35 1.683 7 9 3
36 1.693 7 10 3
37 1.703 7 11 3
38 1.713 7 12 3
39 1.723 7 13 3
40 1.733 7 14 2
41 1.743 7 15 2
42 1.753 7 16 3
43 1.763 7 17 3
44 1.773 7 18 3
45 1.783 7 19 3
46 1.793 7 20 3
47 1.970 4 12 92
48 2.147 12 4 1
49 2.323 12 10 5
50 2.500 10 12 1
51 2.677 10 4 4
52 2.853 4 10 1
53 3.030 4 5 4
54 3.207 5 4 1
55 3.383 5 10 4
56 3.560 10 5 1
57 3.737 5 12 40
58 3.913 12 5 1
59 4.090 7 4 65
60 4.267 7 5 6
61 4.443 7 12 11
62 4.620 7 10 9
63 4.797 14 7 20
64 4.973 14 4 7
65 5.150 14 5 8
66 5.327 14 12 4
67 5.503 14 10 10
68 5.680 16 17 99
69 5.857 17 16 1
70 6.033 16 17 1
71 6.210 17 16 1
72 6.387 7 1 59
73 6.397 7 2 3
74 6.407 7 3 3
75 6.417 7 4 14
76 6.427 7 5 14
77 6.437 7 6 3
78 6.447 7 8 3
79 6.457 7 9 3
80 6.467 7 10 12
81 6.477 7 11 3
82 6.487 7 12 10
83 6.497 7 13 3
84 6.507 7 14 2
85 6.517 7 15 2
86 6.527 7 16 3
87 6.537 7 17 3
88 6.547 7 18 3
89 6.557 7 19 3
90 6.567 7 20 3
91 6.743 17 7 23
92 6.920 7 17 1
93 7.037 7 1 3
94 7.047 7 2 4
95 7.057 7 3 4
96 7.067 7 4 4
97 7.077 7 5 4
98 7.087 7 6 4
99 7.097 7 8 4
100 7.107 7 9 4
101 7.117 7 10 4
102 7.127 7 11 4
103 7.137 7 12 4
104 7.147 7 13 4
105 7.157 7 14 3
106 7.167 7 15 3
107 7.177 7 16 4
108 7.187 7 17 1
109 7.197 7 18 3
110 7.207 7 19 4
111 7.217 7 20 4
112 7.334 10 5 374
113 7.451 5 10 1
114 7.569 4 12 110
115 7.686 12 4 1
116 7.803 7 1 59
117 7.813 7 2 4
118 7.823 7 3 4
119 7.833 7 4 4
120 7.843 7 5 4
121 7.853 7 6 4
122 7.863 7 8 4
123 7.873 7 9 4
124 7.883 7 10 4
125 7.893 7 11 4
126 7.903 7 12 4
127 7.913 7 13 4
128 7.923 7 14 3
129 7.933 7 15 3
130 7.943 7 16 4
131 7.953 7 17 1
132 7.963 7 18 3
133 7.973 7 19 4
134 7.983 7 20 4
135 8.100 18 1 106
136 8.217 1 18 1
137 8.334 20 17 123
138 8.451 17 20 1
139 8.569 7 1 60
140 8.579 7 2 4
141 8.589 7 3 4
142 8.599 7 4 4
143 8.609 7 5 4
144 8.619 7 6 4
145 8.629 7 8 4
146 8.639 7 9 4
147 8.649 7 10 4
148 8.659 7 11 4
149 8.669 7 12 4
150 8.679 7 13 4
151 8.689 7 14 3
152 8.699 7 15 3
153 8.709 7 16 4
154 8.719 7 17 1
155 8.729 7 18 3
156 8.739 7 19 4
157 8.749 7 20 4
158 8.866 4 1 111
159 8.876 4 2 8
160 8.886 4 3 8
161 8.896 4 5 5
162 8.906 4 6 7
163 8.916 4 7 2
164 8.926 4 8 10
165 8.936 4 9 8
166 8.946 4 10 6
167 8.956 4 11 7
168 8.966 4 12 3
169 8.976 4 13 7
170 8.986 4 14 7
171 8.996 4 15 14
172 9.006 4 16 8
173 9.016 4 17 8
174 9.026 4 18 8
175 9.036 4 19 8
176 9.046 4 20 8
177 9.163 16 20 122
178 9.280 20 16 1
179 9.397 9 18 125
180 9.514 18 9 1
181 9.631 20 17 115
182 9.749 17 20 1
183 9.866 13 3 130
184 9.983 3 13 1
185 10.100 14 18 86
186 10.217 18 14 2
187 10.334 14 1 10
188 10.451 1 14 1
189 10.569 14 9 29
190 10.686 9 14 1
191 10.803 10 4 47
192 10.920 4 10 1
193 11.037 18 1 115
194 11.154 1 18 1
195 11.271 4 5 110
196 11.389 5 4 1
197 11.506 18 1 48
198 11.623 1 18 1
199 11.740 18 1 1
200 11.857 1 18 1
201 11.974 14 12 61
202 12.091 12 14 1
203 12.209 14 5 36
204 12.326 5 14 1
205 12.443 14 4 8
206 12.560 4 14 1
207 12.677 4 12 8
208 12.794 12 4 1
209 12.911 11 15 130
210 13.029 15 11 1
211 13.146 11 15 1
212 13.263 15 11 1
213 13.380 8 13 133
214 13.497 13 8 1
215 13.614 20 17 50
216 13.731 17 20 1
217 13.849 14 10 89
218 13.966 10 14 1
219 14.083 7 20 98
220 14.200 20 7 2
221 14.317 7 17 4
222 14.434 17 7 2
223 14.551 7 16 33
224 14.669 16 7 1
225 14.786 1 9 119
226 14.903 9 1 1
227 15.020 13 3 94
228 15.137 3 13 1
229 15.254 11 15 51
230 15.371 15 11 1
231 15.489 12 10 122
232 15.606 10 12 1
233 15.723 10 4 2
234 15.840 4 10 1
235 15.957 4 12 2
236 16.074 12 4 1
237 16.191 10 4 50
238 16.309 4 10 1
239 16.426 17 16 117
240 16.543 16 17 1
241 16.660 1 9 51
242 16.777 9 1 1
243 16.894 9 18 3
244 17.011 18 9 1
245 17.129 3 8 131
246 17.246 8 3 1
247 17.363 7 15 88
248 17.480 15 7 1
249 17.597 7 6 27
250 17.714 6 7 1
251 17.831 7 11 32
252 17.949 11 7 1
253 18.066 12 10 74
254 18.183 10 12 1
255 18.300 17 16 53
256 18.417 16 17 1
257 18.534 4 5 119
258 18.651 5 4 1
259 18.769 12 5 121
260 18.886 5 12 1
261 19.003 4 5 52
262 19.120 5 4 1
263 19.237 13 3 52
264 19.354 3 13 1
265 19.471 18 1 91
266 19.589 1 18 1
267 19.706 6 11 128
268 19.823 11 6 1
269 19.940 13 3 54
270 20.057 3 13 1
271 20.174 10 4 92
272 20.291 4 10 1
273 20.409 4 5 2
274 20.526 5 4 1
275 20.643 3 8 94
276 20.760 8 3 1
277 20.877 20 17 92
278 20.994 17 20 1
279 21.111 5 10 120
280 21.229 10 5 1
281 21.346 15 6 128
282 21.463 6 15 1
283 21.580 12 5 53
284 21.697 5 12 1
285 21.814 4 5 52
286 21.931 5 4 1
287 22.049 4 12 25
288 22.166 12 4 1
289 22.283 4 5 24
290 22.400 5 4 1
291 22.517 8 13 94
292 22.634 13 8 1
293 22.751 17 16 92
294 22.869 16 17 1
295 22.986 3 8 52
296 23.103 8 3 1
297 23.220 4 12 92
298 23.337 12 4 1
299 23.454 3 8 52
300 23.571 8 3 1
301 23.689 5 10 113
302 23.806 10 5 1
303 23.923 7 1 70
304 23.933 7 2 9
305 23.943 7 3 9
306 23.953 7 4 8
307 23.963 7 5 8
308 23.973 7 6 3
309 23.983 7 8 8
310 23.993 7 9 9
311 24.003 7 10 9
312 24.013 7 11 1
313 24.023 7 12 8
314 24.033 7 13 9
315 24.043 7 14 19
316 24.053 7 15 4
317 24.063 7 16 4
318 24.073 7 17 4
319 24.083 7 18 8
320 24.093 7 19 9
321 24.103 7 20 6
322 24.220 14 1 55
323 24.230 14 2 10
324 24.240 14 3 10
325 24.250 14 4 4
326 24.260 14 5 4
327 24.270 14 6 10
328 24.280 14 7 2
329 24.290 14 8 10
330 24.300 14 9 7
331 24.310 14 10 3
332 24.320 14 11 9
333 24.330 14 12 6
334 24.340 14 13 10
335 24.350 14 15 11
336 24.360 14 16 11
337 24.370 14 17 10
338 24.380 14 18 9
339 24.390 14 19 9
340 24.400 14 20 9
341 24.480 10 4 113
342 24.560 4 10 1
343 24.639 8 13 129
344 24.719 13 8 1
345 24.799 18 1 368
346 24.879 1 18 1
347 24.958 12 18 120
348 25.038 18 12 1
349 25.118 3 8 371
350 25.198 8 3 1
351 25.277 20 16 110
352 25.357 16 20 1
353 25.437 20 4 24
354 25.517 4 20 1
355 25.597 14 9 51
356 25.676 9 14 1
357 25.756 14 1 9
358 25.836 1 14 2
359 25.916 14 18 10
360 25.995 18 14 2
361 26.075 10 4 49
362 26.155 4 10 1
363 26.235 1 9 119
364 26.314 9 1 1
365 26.394 4 12 123
366 26.474 12 4 1
367 26.554 18 1 108
368 26.633 1 18 1
369 26.713 12 10 120
370 26.793 10 12 1
371 26.873 9 18 118
372 26.953 18 9 1
373 27.032 16 17 129
374 27.112 17 16 1
375 27.192 17 20 4
376 27.272 20 17 1
377 27.351 3 8 55
378 27.431 8 3 1
379 27.511 20 4 94
380 27.591 7 18 89
381 27.670 18 7 1
382 27.750 7 1 13
383 27.830 1 7 1
384 27.910 7 9 32
385 27.990 9 7 1
386 28.069 8 13 74
387 28.149 13 8 1
388 28.229 13 3 4
389 28.309 3 13 1
390 28.388 16 17 58
391 28.468 17 16 1
392 28.548 12 18 111
393 28.628 18 12 1
394 28.707 17 4 103
395 28.787 9 18 92
396 28.867 18 9 1
397 28.947 18 1 4
398 29.027 1 18 1
399 29.106 10 4 97
400 29.186 4 10 1
401 29.266 18 1 58
402 29.346 1 18 1
403 29.425 13 3 56
404 29.505 3 13 1
405 29.585 6 11 128
406 29.665 11 6 1
407 29.744 6 11 1
408 29.824 11 6 1
409 29.904 14 18 19
410 29.984 18 14 1
411 30.063 14 1 2
412 30.143 1 14 2
413 30.223 14 9 4
414 30.303 9 14 2
415 30.383 17 4 379
416 30.462 4 17 1
417 30.542 15 6 369
418 30.622 6 15 1
419 30.702 12 10 92
420 30.781 10 12 1
421 30.861 4 12 127
422 30.941 12 4 1
423 31.021 13 3 52
424 31.100 3 13 1
425 31.180 20 16 112
426 31.260 16 20 1
427 31.340 14 11 79
428 31.420 11 14 1
429 31.499 14 15 32
430 31.579 15 14 1
431 31.659 14 6 30
432 31.739 6 14 1
433 31.818 15 6 72
434 31.898 6 15 1
435 31.978 4 12 53
436 32.058 12 4 1
437 32.137 12 10 2
438 32.217 10 12 1
439 32.297 5 4 133
440 32.377 4 5 1
441 32.457 3 8 92
442 32.536 8 3 1
443 32.616 17 20 113
444 32.696 20 17 1
445 32.776 15 6 52
446 32.855 6 15 1
447 32.935 3 8 53
448 33.015 8 3 1
449 33.095 13 3 54
450 33.174 3 13 1
451 33.254 17 20 54
452 33.334 20 17 1
453 33.414 7 3 73
454 33.493 3 7 1
455 33.573 7 8 31
456 33.653 8 7 1
457 33.733 7 13 34
458 33.813 13 7 1
459 33.892 16 17 70
460 33.972 17 16 1
461 34.052 5 10 138
462 34.132 10 5 1
463 34.211 6 11 116
464 34.291 11 6 1
465 34.371 1 9 127
466 34.451 9 1 1
467 34.530 6 11 55
468 34.610 11 6 1
469 34.690 11 15 3
470 34.770 15 11 1
471 34.850 15 6 2
472 34.929 6 15 1
473 35.009 20 16 91
474 35.089 16 20 1
475 35.169 11 15 55
476 35.248 15 11 1
477 35.328 5 4 91
478 35.408 4 5 1
479 35.488 14 16 83
480 35.567 16 14 1
481 35.647 14 17 15
482 35.727 17 14 1
483 35.807 14 20 35
484 35.887 20 14 1
485 35.966 5 10 70
486 36.046 10 5 1
487 36.126 16 17 116
488 36.206 17 16 1
489 36.285 12 10 54
490 36.365 10 12 1
491 36.445 20 16 89
492 36.525 16 20 1
493 36.604 10 4 114
494 36.684 4 10 1
495 36.764 4 12 3
496 36.844 12 4 1
497 36.923 17 20 114
498 37.003 20 17 1
499 37.083 7 12 83
500 37.163 12 7 1
501 37.243 7 4 17
502 37.322 4 7 1
503 37.402 7 5 21
504 37.482 5 7 1
505 37.562 7 10 20
506 37.641 10 7 1
507 37.721 14 13 64
508 37.801 13 14 1
509 37.881 14 1 12
510 37.960 1 14 2
511 38.040 14 3 20
512 38.120 3 14 1
513 38.196 4 10 98
514 38.272 10 4 1
515 38.347 10 4 53
516 38.423 4 10 1
517 38.499 11 15 53
518 38.575 15 11 1
519 38.651 14 20 44
520 38.726 20 14 2
521 38.802 14 17 8
522 38.878 17 14 2
523 38.954 14 16 9
524 39.029 16 14 2
525 39.105 5 10 66
526 39.181 10 5 1
527 39.257 13 3 114
528 39.333 3 13 1
529 39.408 17 20 86
530 39.484 20 17 1
531 39.560 6 11 88
532 39.636 11 6 1
533 39.712 4 12 109
534 39.787 12 4 1
535 39.863 9 18 112
536 39.939 18 9 1
537 40.015 7 16 78
538 40.091 16 7 2
539 40.166 7 20 19
540 40.242 20 7 1
541 40.318 7 17 19
542 40.394 17 7 1
543 40.469 6 11 47
544 40.545 11 6 1
545 40.621 1 9 88
546 40.697 9 1 1
547 40.773 5 4 110
548 40.848 4 5 1
549 40.924 15 6 89
550 41.000 6 15 1
551 41.076 3 8 119
552 41.152 8 3 1
553 41.227 7 11 77
554 41.303 11 7 2
555 41.379 7 15 19
556 41.455 15 7 2
557 41.531 7 6 19
558 41.606 6 7 2
559 41.682 18 1 94
560 41.758 1 18 1
561 41.834 1 9 2
562 41.909 9 1 1
563 41.985 12 10 112
564 42.061 4 5 52
565 42.137 5 4 1
566 42.213 12 18 121
567 42.288 18 12 1
568 42.364 18 1 2
569 42.440 1 18 1
570 42.516 12 10 134
571 42.592 10 12 1
572 42.667 4 12 87
573 42.743 12 4 1
574 42.819 20 16 125
575 42.895 16 20 1
576 42.971 18 1 53
577 43.046 1 18 1
578 43.122 14 4 72
579 43.198 4 14 1
580 43.274 14 10 18
581 43.349 10 14 1
582 43.425 14 5 17
583 43.501 5 14 1
584 43.577 14 12 18
585 43.653 12 14 1
586 43.728 12 10 5
587 43.804 10 12 1
588 43.880 20 16 53
589 43.956 16 20 1
590 44.032 4 10 125
591 44.107 16 17 123
592 44.183 17 16 1
593 44.259 15 6 90
594 44.335 6 15 1
595 44.411 17 20 111
596 44.486 20 17 1
597 44.562 7 9 77
598 44.638 9 7 2
599 44.714 7 18 19
600 44.789 18 7 1
601 44.865 7 1 20
602 44.941 1 7 2
603 45.017 16 17 48
604 45.093 17 16 1
605 45.168 4 12 86
606 45.244 12 4 1
607 45.320 13 3 54
608 45.396 3 13 1
609 45.472 20 16 88
610 45.547 16 20 1
611 45.623 6 11 112
612 45.699 11 6 1
613 45.775 6 11 1
614 45.851 11 6 1
615 45.926 12 10 89
616 46.002 10 12 1
617 46.078 9 18 114
618 46.154 18 9 1
619 46.229 4 10 132
620 46.305 4 12 2
621 46.381 12 4 1
622 46.457 14 18 80
623 46.533 18 14 1
624 46.608 14 1 14
625 46.684 1 14 2
626 46.760 14 9 19
627 46.836 9 14 2
628 46.912 3 8 72
629 46.987 8 3 1
630 47.063 16 17 89
631 47.139 17 16 1
632 47.215 13 3 53
633 47.291 3 13 1
634 47.366 15 6 54
635 47.442 6 15 1
636 47.518 16 17 54
637 47.594 17 16 1
638 47.669 3 8 89
639 47.745 8 3 1
640 47.821 8 13 3
641 47.897 13 8 1
642 47.973 14 12 45
643 48.048 12 14 2
644 48.124 14 5 8
645 48.200 5 14 2
646 48.276 14 10 8
647 48.352 10 14 2
648 48.427 14 4 10
649 48.503 4 14 2
650 48.579 18 1 106
651 48.655 1 18 1
652 48.731 12 18 122
653 48.806 3 8 52
654 48.882 8 3 1
655 48.958 13 3 91
656 49.034 3 13 1
657 49.109 15 6 53
658 49.185 6 15 1
659 49.261 11 15 115
660 49.337 15 11 1
661 49.413 20 16 53
662 49.488 16 20 1
663 49.564 8 13 91
664 49.640 13 8 1
665 49.761 7 15 47
666 49.882 15 7 2
667 50.003 7 1 2
668 50.013 7 2 17
669 50.023 7 3 17
670 50.033 7 4 13
671 50.043 7 5 12
672 50.053 7 6 6
673 50.063 7 8 13
674 50.073 7 9 5
675 50.083 7 10 9
676 50.093 7 11 5
677 50.103 7 12 10
678 50.113 7 13 10
679 50.123 7 14 19
680 50.133 7 15 2
681 50.143 7 16 8
682 50.153 7 17 7
683 50.163 7 18 4
684 50.173 7 19 15
685 50.183 7 20 8
686 50.304 1 7 59
687 50.426 1 3 22
688 50.547 3 1 1
689 50.668 6 17 142
690 50.789 6 17 380
691 50.910 17 6 1
692 50.920 NA NA NA
It looks like there is some structure in the errors: we aren’t able to capture certain kinds of intrusive events. Does looking at the “surprising” events (say, those for which the observed event is not in the top 5% of those predicted) in time-aggregate form help?
# Get the surprising events, and display as a network
<- as.sociomatrix.eventlist(Class[classfit6$observed.rank >
surprising 19, ], 20)
gplot(surprising, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
vertex.cex = 2) ClassIsTeacher,
# Show how the 'surprising' events fit into the broader
# communication structure
<- matrix(rgb(surprising/(ClassNet + 0.01), 0, 0), 20,
edgecol 20) #Color me surprised
gplot(ClassNet, edge.col = edgecol, edge.lwd = ClassNet^0.75,
vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 + ClassIsTeacher,
vertex.cex = 2)
The visualization gives us more of a clue about what we’re missing: various side discussions occur that are not well-captured by the current model. This could be due to the fact that things like P-shift effects fail to capture simultaneous side conversations (each of which may have its own set of turn-taking patterns), or to a lack of covariates to capture the enhanced propensity of subgroup members to address each other. Further elaboration could be helpful here. On the other hand, we seem to be doing reasonably well at capturing the main line of discussion within the classroom, particularly vis a vis the instructors. Whether or not this is adequate depends on the purpose to which the model is to be put; as always, adequacy must be considered in light of specific scientific goals.
Simulation from fitted models with exact timing proceeds exactly as in the ordinal timing case: we can use the simulate
method for rem.dyad
to generate trajectories from the fitted model object.
For instance, to generate a new trajectory from the final classroom model, we would use the code
set.seed(1331)
<- simulate(classfit6, covar = list(CovSnd = cbind(ClassIntercept,
ClassSim CovRec = ClassIsTeacher))
ClassIsTeacher),
#Examine the resulting trajectory ClassSim
[,1] [,2] [,3]
[1,] 0.2452406 7 1
[2,] 0.2648231 1 7
[3,] 0.2823708 7 18
[4,] 0.3090334 13 19
[5,] 0.3387776 7 2
[6,] 0.4176982 15 19
[7,] 0.4333130 14 16
[8,] 0.4465385 14 18
[9,] 0.5291631 14 9
[10,] 0.6368674 14 10
[11,] 0.7403645 10 14
[12,] 0.8529576 14 18
[13,] 0.8781375 14 10
[14,] 0.9604438 14 12
[15,] 0.9896705 16 14
[16,] 0.9930157 14 16
[17,] 1.1128360 7 6
[18,] 1.1441811 14 7
[19,] 1.1651407 14 8
[20,] 1.1939772 8 14
[21,] 1.2091976 14 6
[22,] 1.2306047 14 17
[23,] 1.3323831 14 10
[24,] 1.3605220 10 5
[25,] 1.4054571 5 10
[26,] 1.4482527 10 5
[27,] 1.5010655 14 8
[28,] 1.5663907 14 16
[29,] 1.8808538 14 13
[30,] 2.0099635 14 19
[31,] 2.0260216 14 15
[32,] 2.1178520 14 18
[33,] 2.1972178 14 10
[34,] 2.2516805 7 14
[35,] 2.2757663 7 18
[36,] 2.2767540 17 19
[37,] 2.3050987 17 14
[38,] 2.3331962 7 20
[39,] 2.3480541 7 15
[40,] 2.4195505 15 7
[41,] 2.4486848 7 15
[42,] 2.5661515 7 19
[43,] 2.6034570 7 14
[44,] 2.6444055 14 7
[45,] 2.7902233 7 14
[46,] 2.8476529 7 4
[47,] 2.8892709 7 3
[48,] 2.8958928 13 16
[49,] 2.9141223 16 13
[50,] 3.2577775 13 16
[51,] 3.3103192 18 6
[52,] 3.6363817 17 20
[53,] 3.6689457 20 17
[54,] 3.6928119 20 10
[55,] 3.7176484 10 20
[56,] 3.8541742 20 10
[57,] 3.8883622 20 6
[58,] 3.9300445 6 20
[59,] 4.1380207 20 6
[60,] 4.2587305 2 6
[61,] 4.2860776 2 1
[62,] 4.3805096 16 9
[63,] 4.4431156 16 12
[64,] 4.5267905 12 16
[65,] 4.5635038 16 12
[66,] 4.6236599 16 8
[67,] 4.6471357 8 16
[68,] 4.7474069 10 11
[69,] 4.7939076 11 10
[70,] 4.7961521 2 13
[71,] 4.8091721 13 2
[72,] 4.8247684 14 12
[73,] 4.8955596 14 17
[74,] 4.9081606 14 9
[75,] 4.9153816 14 17
[76,] 4.9806210 14 7
[77,] 5.0242039 14 4
[78,] 5.0613454 4 14
[79,] 5.0644610 14 4
[80,] 5.2103559 14 3
[81,] 5.2849792 14 4
[82,] 5.3802582 14 19
[83,] 5.4723226 14 8
[84,] 5.4730835 14 4
[85,] 5.4856095 4 14
[86,] 5.5160662 14 4
[87,] 5.5235970 4 14
[88,] 5.5503473 4 18
[89,] 5.6166395 14 11
[90,] 5.6329733 11 14
[91,] 5.6923873 11 8
[92,] 5.6942170 8 11
[93,] 5.7328500 11 8
[94,] 6.0436211 19 20
[95,] 6.1846271 3 12
[96,] 6.3465512 3 10
[97,] 6.3948913 10 3
[98,] 6.4390823 11 19
[99,] 6.5775612 11 8
[100,] 6.7374425 11 14
[101,] 6.7471661 14 11
[102,] 6.9235061 14 2
[103,] 6.9321178 14 11
[104,] 7.0017914 14 7
[105,] 7.0218476 14 4
[106,] 7.1118430 10 2
[107,] 7.2821982 2 10
[108,] 7.2954398 2 5
[109,] 7.4197377 2 13
[110,] 7.5068005 19 13
[111,] 7.5149229 13 19
[112,] 7.5259535 13 17
[113,] 7.5536580 17 13
[114,] 7.6412618 14 9
[115,] 7.6970685 14 11
[116,] 7.7209054 14 4
[117,] 7.7972795 14 17
[118,] 7.8557384 14 11
[119,] 7.8695549 14 13
[120,] 7.8987990 4 8
[121,] 7.9182603 20 15
[122,] 7.9188059 20 19
[123,] 7.9489409 19 20
[124,] 8.1252133 20 19
[125,] 8.1253137 12 1
[126,] 8.1870938 7 14
[127,] 8.2255444 6 13
[128,] 8.2850498 13 6
[129,] 8.3191521 13 1
[130,] 8.3472563 13 11
[131,] 8.4147805 11 13
[132,] 8.5221672 13 15
[133,] 8.5532448 15 13
[134,] 8.6039365 9 2
[135,] 8.6043771 2 9
[136,] 8.6103668 15 13
[137,] 9.1065793 10 11
[138,] 9.1890090 11 9
[139,] 9.1973022 10 20
[140,] 9.2939096 14 3
[141,] 9.4186345 3 14
[142,] 9.4677800 14 3
[143,] 9.5318442 11 10
[144,] 9.6027641 8 4
[145,] 9.6083736 14 10
[146,] 9.6511044 10 14
[147,] 9.6585089 14 10
[148,] 9.6731494 14 3
[149,] 9.7398523 14 10
[150,] 9.7956552 14 3
[151,] 9.9224096 17 10
[152,] 9.9843138 10 17
[153,] 10.2349586 6 2
[154,] 10.2442880 4 8
[155,] 10.5105997 4 14
[156,] 10.5192640 14 4
[157,] 10.5904990 14 5
[158,] 10.6502651 4 8
[159,] 10.7461853 11 17
[160,] 10.7516434 17 11
[161,] 10.7689437 2 6
[162,] 10.8838885 2 17
[163,] 11.1188738 19 11
[164,] 11.1590405 11 19
[165,] 11.1622199 12 3
[166,] 11.1632756 3 12
[167,] 11.1641638 12 3
[168,] 11.3016102 14 1
[169,] 11.3321506 14 11
[170,] 11.3689192 11 14
[171,] 11.3763255 14 11
[172,] 11.4384703 5 3
[173,] 11.4402059 3 5
[174,] 11.4724416 5 3
[175,] 11.5889165 19 4
[176,] 11.6021389 19 10
[177,] 11.6070987 10 20
[178,] 11.9242354 20 10
[179,] 12.0264531 20 13
[180,] 12.1624161 20 15
[181,] 12.2224137 6 20
[182,] 12.2441010 20 6
[183,] 12.3747291 20 10
[184,] 12.3944444 4 14
[185,] 12.4116946 14 4
[186,] 12.4162950 16 12
[187,] 12.4301668 12 16
[188,] 12.5619961 16 11
[189,] 12.5628238 16 15
[190,] 12.6720685 9 4
[191,] 12.6736422 9 12
[192,] 12.6892347 7 19
[193,] 12.7221529 7 9
[194,] 12.8535337 7 4
[195,] 12.8592389 4 7
[196,] 12.9332676 3 18
[197,] 12.9885715 13 20
[198,] 13.1496985 14 1
[199,] 13.1568560 14 11
[200,] 13.2273539 14 6
[201,] 13.3044239 7 20
[202,] 13.3309505 7 6
[203,] 13.3765524 7 9
[204,] 13.4877925 9 7
[205,] 13.4935982 7 9
[206,] 13.6490578 9 7
[207,] 13.7358024 7 9
[208,] 13.7451628 13 11
[209,] 13.8766391 13 17
[210,] 13.8839738 18 3
[211,] 14.4087458 3 18
[212,] 14.4922953 3 19
[213,] 14.5187435 19 3
[214,] 14.5962956 19 2
[215,] 14.6480825 2 19
[216,] 14.6542242 2 9
[217,] 14.6683229 9 2
[218,] 14.6688178 2 9
[219,] 14.7126977 7 4
[220,] 14.7254168 7 15
[221,] 14.7994923 7 9
[222,] 14.8053192 7 1
[223,] 14.8207223 7 4
[224,] 14.9569717 7 14
[225,] 14.9715335 7 9
[226,] 15.1170290 7 20
[227,] 15.1287774 7 3
[228,] 15.2600767 19 9
[229,] 15.2657953 9 19
[230,] 15.6325826 19 9
[231,] 15.7466498 19 13
[232,] 15.7481620 13 19
[233,] 15.9445073 13 1
[234,] 16.0256332 1 13
[235,] 16.0932017 9 19
[236,] 16.0986587 19 9
[237,] 16.5889198 3 11
[238,] 16.6232210 11 3
[239,] 16.9296529 11 13
[240,] 17.0472275 17 16
[241,] 17.0911631 17 3
[242,] 17.1267226 3 17
[243,] 17.1828444 5 14
[244,] 17.2051938 5 7
[245,] 17.2292301 7 5
[246,] 17.2317036 7 1
[247,] 17.2981345 13 11
[248,] 17.3477642 11 13
[249,] 17.5734000 11 19
[250,] 17.6936655 19 11
[251,] 17.7787588 11 19
[252,] 17.8079670 19 15
[253,] 17.8135900 19 14
[254,] 17.8701236 14 19
[255,] 18.0943224 14 4
[256,] 18.2633559 14 19
[257,] 18.2812897 14 3
[258,] 18.3060165 7 9
[259,] 18.3071107 13 6
[260,] 18.4394774 16 20
[261,] 18.4541340 14 16
[262,] 18.4687844 14 5
[263,] 18.4898366 5 14
[264,] 18.5400649 14 5
[265,] 18.5503013 14 19
[266,] 18.7682955 14 16
[267,] 18.9537682 14 5
[268,] 18.9650912 14 6
[269,] 18.9730496 6 14
[270,] 18.9751546 14 6
[271,] 18.9808471 1 6
[272,] 19.0751394 6 1
[273,] 19.1589791 6 14
[274,] 19.2729859 6 1
[275,] 19.2988701 6 11
[276,] 19.3288595 11 20
[277,] 19.4771644 11 6
[278,] 19.5031600 11 17
[279,] 19.5130243 11 8
[280,] 19.5886972 15 4
[281,] 19.5990167 4 15
[282,] 19.7560289 4 9
[283,] 19.8208170 4 15
[284,] 19.8529197 15 4
[285,] 19.9564250 15 12
[286,] 19.9867903 12 15
[287,] 19.9881318 9 15
[288,] 20.1750339 13 9
[289,] 20.2485756 13 1
[290,] 20.2723146 13 11
[291,] 20.2909877 11 13
[292,] 20.3049760 13 11
[293,] 20.3518840 13 3
[294,] 20.4588187 14 15
[295,] 20.4749123 8 4
[296,] 20.6331680 4 8
[297,] 20.6588543 18 4
[298,] 20.7267505 4 18
[299,] 20.9257726 4 17
[300,] 20.9440007 17 4
[301,] 21.1167324 14 5
[302,] 21.1224018 14 6
[303,] 21.1270658 14 11
[304,] 21.1495517 14 6
[305,] 21.1528705 6 14
[306,] 21.1717151 20 4
[307,] 21.5401042 2 5
[308,] 21.5618616 5 2
[309,] 21.5821512 11 16
[310,] 21.5831115 16 11
[311,] 21.6441957 19 10
[312,] 21.6465200 10 11
[313,] 21.6934170 10 2
[314,] 21.7286130 20 11
[315,] 21.7583574 11 20
[316,] 21.7999521 20 19
[317,] 21.9375813 20 18
[318,] 21.9607900 20 11
[319,] 21.9672033 20 1
[320,] 21.9845174 1 20
[321,] 22.0355624 7 6
[322,] 22.1759707 6 7
[323,] 22.2490550 7 6
[324,] 22.3666474 7 5
[325,] 22.4026281 7 6
[326,] 22.4089384 19 20
[327,] 22.4805849 10 11
[328,] 22.5407699 11 10
[329,] 22.5628110 10 11
[330,] 22.6058371 10 14
[331,] 22.6092338 14 10
[332,] 22.6341951 14 12
[333,] 22.6472399 14 3
[334,] 22.6820977 2 7
[335,] 22.7125079 2 16
[336,] 22.8277068 7 10
[337,] 22.8520034 7 16
[338,] 22.8865283 7 17
[339,] 22.9236734 7 2
[340,] 22.9243246 7 9
[341,] 23.1398206 14 10
[342,] 23.1552716 14 6
[343,] 23.2386636 14 5
[344,] 23.2898722 1 16
[345,] 23.3229580 18 20
[346,] 23.3906574 20 18
[347,] 23.3951750 18 14
[348,] 23.4084453 14 18
[349,] 23.4153094 4 3
[350,] 23.7224698 3 4
[351,] 23.8676039 4 3
[352,] 23.9110680 4 11
[353,] 24.0928888 9 5
[354,] 24.1000318 5 9
[355,] 24.1245257 5 14
[356,] 24.1410492 14 15
[357,] 24.3241879 14 11
[358,] 24.4495686 11 14
[359,] 24.5153842 14 11
[360,] 24.7185898 14 19
[361,] 24.7986742 8 11
[362,] 24.9028809 11 8
[363,] 25.0740465 14 2
[364,] 25.1535931 2 14
[365,] 25.2352473 2 8
[366,] 25.2434573 3 4
[367,] 25.3301633 11 1
[368,] 25.3627133 1 11
[369,] 25.3697275 1 3
[370,] 25.3704862 1 11
[371,] 25.4901048 7 3
[372,] 25.5204790 7 2
[373,] 25.5866197 17 11
[374,] 25.6119074 17 5
[375,] 25.6713632 8 11
[376,] 25.7245885 11 8
[377,] 25.7784811 11 4
[378,] 25.8278478 4 12
[379,] 25.9007120 12 4
[380,] 25.9205891 4 12
[381,] 26.1072152 5 20
[382,] 26.1106911 17 4
[383,] 26.1492535 7 2
[384,] 26.1591406 7 6
[385,] 26.1900614 6 1
[386,] 26.2069381 1 6
[387,] 26.2517618 14 18
[388,] 26.2940293 14 2
[389,] 26.2980738 14 6
[390,] 26.3108769 14 8
[391,] 26.3210868 14 11
[392,] 26.3995707 11 14
[393,] 26.4002394 14 11
[394,] 26.4716263 14 13
[395,] 26.5010285 14 12
[396,] 26.5018162 12 14
[397,] 26.5465841 14 12
[398,] 26.5800807 14 18
[399,] 26.6243637 4 17
[400,] 26.7885440 4 9
[401,] 26.8853559 4 11
[402,] 26.8949375 15 14
[403,] 26.9038478 14 15
[404,] 26.9184861 14 9
[405,] 27.2078228 14 8
[406,] 27.2402465 14 11
[407,] 27.2717271 14 15
[408,] 27.2870569 14 20
[409,] 27.2948397 14 1
[410,] 27.3146943 1 14
[411,] 27.3324110 14 1
[412,] 27.3825507 2 7
[413,] 27.3919511 7 17
[414,] 27.4193866 8 16
[415,] 27.4606229 16 8
[416,] 27.4804322 11 16
[417,] 27.6084444 16 17
[418,] 27.6484723 16 9
[419,] 27.6510523 9 16
[420,] 27.6533441 16 9
[421,] 27.7054053 6 15
[422,] 27.7182629 20 5
[423,] 27.8118757 20 16
[424,] 27.8162973 20 1
[425,] 27.9490851 20 6
[426,] 27.9528988 6 20
[427,] 27.9657640 6 3
[428,] 28.0368409 20 10
[429,] 28.0557303 10 20
[430,] 28.1706347 1 17
[431,] 28.1833050 17 1
[432,] 28.3133736 17 19
[433,] 28.4083375 19 17
[434,] 28.4253196 17 19
[435,] 28.4575699 6 7
[436,] 28.4741309 7 6
[437,] 28.5848895 7 2
[438,] 28.6315986 7 16
[439,] 28.6456759 7 15
[440,] 28.6836957 7 5
[441,] 28.6894702 7 2
[442,] 28.7737854 7 9
[443,] 28.8444097 7 12
[444,] 28.9421365 7 5
[445,] 28.9678462 7 13
[446,] 28.9685150 7 6
[447,] 29.0333501 7 8
[448,] 29.0731005 7 18
[449,] 29.0886719 3 6
[450,] 29.1177510 6 3
[451,] 29.3610801 14 3
[452,] 29.4397470 14 6
[453,] 29.5426818 6 14
[454,] 29.5735873 9 15
[455,] 29.7460459 15 9
[456,] 29.9430047 9 15
[457,] 30.0584610 15 4
[458,] 30.0659651 4 15
[459,] 30.1391081 15 4
[460,] 30.2241407 4 15
[461,] 30.3288316 4 6
[462,] 30.3534662 6 4
[463,] 30.3791247 14 13
[464,] 30.4016167 14 3
[465,] 30.4217952 14 1
[466,] 30.5115662 1 14
[467,] 30.8028755 1 20
[468,] 30.9268857 20 1
[469,] 31.0253984 6 16
[470,] 31.1077859 12 7
[471,] 31.2137391 6 4
[472,] 31.2566292 6 18
[473,] 31.3426713 6 2
[474,] 31.3756948 2 6
[475,] 31.5431746 6 2
[476,] 31.6465869 2 6
[477,] 31.7038420 2 8
[478,] 31.7945439 6 2
[479,] 31.9602173 2 6
[480,] 32.0559202 19 17
[481,] 32.0731337 14 20
[482,] 32.0970402 16 2
[483,] 32.2297767 7 12
[484,] 32.2931407 15 17
[485,] 32.3124108 17 15
[486,] 32.4045238 7 14
[487,] 32.4763058 14 7
[488,] 32.4963266 6 4
[489,] 32.5986856 20 18
[490,] 32.6004343 18 20
[491,] 32.6329436 14 6
[492,] 32.6615266 6 11
[493,] 32.7050980 11 6
[494,] 32.7360602 6 11
[495,] 32.7725736 11 6
[496,] 32.7808480 6 11
[497,] 32.8311169 14 1
[498,] 32.9259442 14 8
[499,] 32.9417185 14 7
[500,] 32.9797267 7 14
[501,] 33.0390583 7 4
[502,] 33.0562215 7 8
[503,] 33.0638552 7 15
[504,] 33.1195809 7 20
[505,] 33.2015753 7 2
[506,] 33.2277283 7 9
[507,] 33.2529786 7 13
[508,] 33.3885963 7 5
[509,] 33.4128828 7 1
[510,] 33.4691639 1 7
[511,] 33.5093445 7 1
[512,] 33.5248226 7 16
[513,] 33.5462595 7 20
[514,] 33.5463911 14 7
[515,] 33.5639515 14 13
[516,] 33.5937672 14 19
[517,] 33.5968384 19 11
[518,] 33.5998664 11 19
[519,] 33.6168668 4 7
[520,] 33.6189323 2 7
[521,] 33.7010039 7 2
[522,] 33.8050112 7 1
[523,] 33.8160809 1 7
[524,] 33.8244629 7 1
[525,] 33.8259883 7 3
[526,] 33.8614870 7 2
[527,] 33.9527330 7 4
[528,] 33.9872327 7 1
[529,] 33.9967008 7 6
[530,] 34.0475710 11 6
[531,] 34.1841417 6 20
[532,] 34.2328642 20 12
[533,] 34.2847152 17 6
[534,] 34.3219325 6 17
[535,] 34.4211627 16 5
[536,] 34.4393714 5 16
[537,] 34.6413756 5 20
[538,] 34.6709085 20 5
[539,] 34.6809983 3 8
[540,] 34.6929616 13 14
[541,] 34.7120738 14 13
[542,] 34.8118682 14 1
[543,] 34.8261178 14 10
[544,] 34.9671096 15 9
[545,] 34.9830201 9 7
[546,] 35.0238791 7 9
[547,] 35.0542115 7 8
[548,] 35.0966428 7 4
[549,] 35.1387345 7 13
[550,] 35.2204800 7 9
[551,] 35.2441853 7 16
[552,] 35.2901322 7 9
[553,] 35.4145566 7 1
[554,] 35.7229383 7 15
[555,] 35.9514621 19 10
[556,] 35.9873757 10 19
[557,] 36.0312063 10 6
[558,] 36.0744515 6 10
[559,] 36.1377635 10 6
[560,] 36.1452934 6 11
[561,] 36.1504506 11 6
[562,] 36.1542935 6 4
[563,] 36.2548844 5 20
[564,] 36.3574819 12 5
[565,] 36.5289930 5 12
[566,] 36.5395672 7 9
[567,] 36.5526053 9 7
[568,] 36.5759118 7 9
[569,] 36.6116748 7 17
[570,] 36.6136934 7 5
[571,] 36.6424802 11 17
[572,] 36.6447348 9 15
[573,] 36.7034005 15 6
[574,] 36.7059325 6 15
[575,] 36.7657095 15 6
[576,] 36.7989563 15 5
[577,] 37.0675040 13 7
[578,] 37.0808582 7 13
[579,] 37.0814604 7 1
[580,] 37.1055839 7 5
[581,] 37.1186154 14 13
[582,] 37.2679826 7 1
[583,] 37.2960950 7 20
[584,] 37.3677703 4 8
[585,] 37.4025010 8 4
[586,] 37.5069787 4 6
[587,] 37.5072298 16 15
[588,] 37.5128636 15 16
[589,] 37.6103834 15 6
[590,] 37.6524542 6 15
[591,] 37.6835949 7 13
[592,] 37.7865126 2 9
[593,] 37.8189061 9 2
[594,] 37.8917500 7 9
[595,] 37.9513602 7 8
[596,] 37.9980266 7 13
[597,] 38.1546830 14 8
[598,] 38.3171288 3 15
[599,] 38.3437248 15 3
[600,] 38.3963197 3 19
[601,] 38.4508630 19 3
[602,] 38.5617555 19 2
[603,] 38.5674225 19 3
[604,] 38.5779469 3 19
[605,] 38.6005196 14 13
[606,] 38.6035738 14 5
[607,] 38.6236176 14 16
[608,] 38.7539113 14 13
[609,] 38.7695949 14 9
[610,] 38.7847434 8 14
[611,] 38.8141195 14 10
[612,] 38.8546519 10 14
[613,] 38.8856843 3 12
[614,] 38.8971987 12 3
[615,] 38.8985959 7 13
[616,] 39.0302979 7 19
[617,] 39.1842675 2 19
[618,] 39.1902902 19 2
[619,] 39.2850294 19 7
[620,] 39.4802016 7 19
[621,] 39.5657334 7 15
[622,] 39.5745753 12 3
[623,] 39.5892430 12 5
[624,] 39.5989764 12 3
[625,] 39.8599689 11 6
[626,] 39.8981680 12 3
[627,] 40.0775777 17 11
[628,] 40.2294018 4 17
[629,] 40.2488235 4 6
[630,] 40.2914973 4 15
[631,] 40.3512988 15 4
[632,] 40.4007433 4 13
[633,] 40.4155035 13 4
[634,] 40.4345683 2 19
[635,] 40.4471052 12 4
[636,] 40.4764286 12 5
[637,] 40.5128387 3 17
[638,] 40.5240739 17 3
[639,] 40.5359555 17 2
[640,] 40.5955872 9 7
[641,] 40.6047661 7 9
[642,] 40.9342496 7 8
[643,] 41.1043976 8 7
[644,] 41.1304591 7 12
[645,] 41.1320255 7 8
[646,] 41.2790710 8 13
[647,] 41.3160310 13 8
[648,] 41.5102909 8 13
[649,] 41.6072383 13 8
[650,] 41.7518726 13 6
[651,] 41.8732021 6 13
[652,] 42.0842196 17 3
[653,] 42.4131778 3 1
[654,] 42.6919816 16 17
[655,] 42.7742470 17 16
[656,] 42.8749476 11 4
[657,] 42.9347539 4 11
[658,] 43.0040837 5 12
[659,] 43.1983930 9 5
[660,] 43.2060928 19 17
[661,] 43.2925419 17 19
[662,] 43.3371177 19 17
[663,] 43.3500841 14 1
[664,] 43.5718145 14 10
[665,] 43.5900884 14 5
[666,] 43.7441968 5 14
[667,] 43.8435051 14 20
[668,] 43.9931429 14 11
[669,] 44.0050935 14 4
[670,] 44.1512531 14 5
[671,] 44.2431168 1 13
[672,] 44.2579556 1 10
[673,] 44.4453069 1 2
[674,] 44.4918649 2 1
[675,] 44.5412848 1 2
[676,] 44.5800237 1 18
[677,] 44.5897906 18 1
[678,] 44.6075830 10 6
[679,] 44.6650283 10 1
[680,] 44.6764132 1 10
[681,] 44.7268193 7 2
[682,] 44.8006121 7 11
[683,] 44.8937676 11 7
[684,] 44.9192399 7 11
[685,] 45.1132388 7 5
[686,] 45.1784443 5 7
[687,] 45.2122946 7 5
[688,] 45.2142086 7 2
[689,] 45.2355012 7 1
[690,] 45.2423900 7 6
[691,] 45.3343998 7 12
[692,] 45.5331007 7 5
attr(,"n")
[1] 20
As we saw in section 1.5, running the simulate
command on the fitted model object produces a new trajectory of identical length to the original, with the same coefficients. Note that the new trajectory is identical in terms of the number of realized events it contains, and it will not in general cover the same time period. Some disparity between the two is normal (and, indeed, will happen with probability 1); however, when the total mean time period of the replicate sequences is substantially different from that of the original data, this suggests that the pacing of the model is off.
In section 1.5, we showed how an in silico knock-out study could be used to gain insights into model behavior. Another useful strategy can be to simulate trajectories from a fitted model with alternative choices of covariates. For instance, what might we expect if we replaced the teachers in our classroom with students? This anarchic state of affairs can be probed by conditional simulation with a different set of covariates:
set.seed(1331)
<- simulate(classfit6, covar = list(CovSnd = cbind(ClassIntercept,
AnarchSim rep(0, 20)), CovRec = rep(0, 20)))
#Examine the trajectory AnarchSim
[,1] [,2] [,3]
[1,] 0.2923515 10 2
[2,] 0.3138210 2 10
[3,] 0.3510444 10 11
[4,] 0.3835972 16 10
[5,] 0.4142685 10 9
[6,] 0.5083223 17 10
[7,] 0.5244353 8 2
[8,] 0.5389906 2 8
[9,] 0.6802183 2 9
[10,] 0.7892703 2 10
[11,] 0.9134098 10 2
[12,] 1.1401850 12 9
[13,] 1.1722811 9 12
[14,] 1.2860454 9 5
[15,] 1.3204495 5 7
[16,] 1.3273660 7 5
[17,] 1.5075009 20 8
[18,] 1.5491137 1 17
[19,] 1.5938980 17 14
[20,] 1.6298887 14 17
[21,] 1.6616933 8 20
[22,] 1.7067590 8 12
[23,] 1.8390479 12 8
[24,] 1.8913241 14 9
[25,] 1.9369586 9 14
[26,] 1.9811656 14 9
[27,] 2.0370623 9 14
[28,] 2.1335926 14 9
[29,] 2.6729811 14 18
[30,] 2.8382528 14 16
[31,] 2.8590620 14 9
[32,] 3.0556566 9 3
[33,] 3.1590208 3 9
[34,] 3.2669588 16 12
[35,] 3.3078964 12 8
[36,] 3.3095424 9 13
[37,] 3.3376921 9 3
[38,] 3.4363125 10 15
[39,] 3.4532782 15 10
[40,] 3.5902819 10 15
[41,] 3.6483713 10 7
[42,] 3.7521118 7 10
[43,] 3.8269062 7 17
[44,] 3.9046200 17 7
[45,] 4.2060779 7 17
[46,] 4.3230083 7 15
[47,] 4.3705424 7 17
[48,] 4.3829189 15 18
[49,] 4.4005101 18 15
[50,] 4.7473379 15 18
[51,] 4.8002952 6 7
[52,] 5.1516216 14 2
[53,] 5.1838103 2 14
[54,] 5.2084110 2 12
[55,] 5.2336393 12 2
[56,] 5.3725820 2 12
[57,] 5.4079163 2 1
[58,] 5.4507212 1 2
[59,] 5.6765531 2 1
[60,] 5.8029152 18 9
[61,] 5.8301614 18 11
[62,] 5.9231090 19 12
[63,] 5.9907464 19 18
[64,] 6.0822838 18 19
[65,] 6.1201862 19 18
[66,] 6.1839592 19 2
[67,] 6.2083768 2 19
[68,] 6.3104546 6 3
[69,] 6.3612695 3 6
[70,] 6.3635917 18 20
[71,] 6.3765043 20 18
[72,] 6.3926947 9 2
[73,] 6.4801542 2 9
[74,] 6.5009094 2 16
[75,] 6.5094136 16 2
[76,] 6.6197567 2 16
[77,] 6.7288753 2 6
[78,] 6.7720283 6 2
[79,] 6.7783036 2 6
[80,] 6.9902940 2 16
[81,] 7.1295312 16 2
[82,] 7.2700955 16 10
[83,] 7.3857667 10 16
[84,] 7.3871850 16 10
[85,] 7.4055742 10 16
[86,] 7.4659411 10 15
[87,] 7.4746054 15 10
[88,] 7.5276444 10 3
[89,] 7.5931534 5 7
[90,] 7.6173554 7 5
[91,] 7.7344786 17 7
[92,] 7.7369220 7 17
[93,] 7.7766256 17 7
[94,] 8.0974681 14 11
[95,] 8.2430772 3 18
[96,] 8.4024629 3 6
[97,] 8.4627660 3 10
[98,] 8.5094996 8 5
[99,] 8.6521529 8 12
[100,] 8.7905450 12 8
[101,] 8.8102717 12 16
[102,] 9.0012504 16 12
[103,] 9.0186334 12 16
[104,] 9.1225920 12 11
[105,] 9.1572275 11 12
[106,] 9.3198058 18 13
[107,] 9.4919963 13 18
[108,] 9.5060486 13 4
[109,] 9.6355998 13 18
[110,] 9.7350642 10 6
[111,] 9.7426123 6 10
[112,] 9.7545681 6 14
[113,] 9.7836287 14 6
[114,] 9.8767031 12 8
[115,] 9.9865232 8 12
[116,] 10.0229004 12 8
[117,] 10.1606178 12 11
[118,] 10.2660379 11 12
[119,] 10.2863148 11 8
[120,] 10.3231104 18 1
[121,] 10.3425520 16 4
[122,] 10.3431345 16 12
[123,] 10.3727520 12 16
[124,] 10.5624301 16 12
[125,] 10.5625374 10 12
[126,] 10.6277905 10 18
[127,] 10.6907802 15 12
[128,] 10.7540297 12 15
[129,] 10.7891422 12 2
[130,] 10.8201671 12 3
[131,] 10.8886497 3 12
[132,] 10.9998726 12 8
[133,] 11.0466813 12 16
[134,] 11.0947992 14 3
[135,] 11.0952471 3 14
[136,] 11.1014634 14 18
[137,] 11.4260469 18 11
[138,] 11.4992313 4 16
[139,] 11.5107387 3 20
[140,] 11.5998758 18 10
[141,] 11.8148213 10 18
[142,] 11.9102173 18 10
[143,] 12.0031147 4 16
[144,] 12.0764164 4 10
[145,] 12.0800471 4 18
[146,] 12.1312406 18 4
[147,] 12.1456774 18 7
[148,] 12.1590898 7 18
[149,] 12.2703321 18 7
[150,] 12.3514374 7 18
[151,] 12.5628293 4 9
[152,] 12.6247315 9 4
[153,] 12.8824835 11 14
[154,] 12.8921084 6 14
[155,] 13.1056009 14 6
[156,] 13.1349143 6 14
[157,] 13.2410594 6 1
[158,] 13.3167525 5 4
[159,] 13.3783385 3 16
[160,] 13.3838449 16 3
[161,] 13.4015984 20 3
[162,] 13.5027549 3 20
[163,] 13.8862906 19 10
[164,] 13.9254173 10 19
[165,] 13.9287132 10 5
[166,] 13.9295736 5 10
[167,] 13.9304816 10 5
[168,] 14.0702703 14 11
[169,] 14.1302417 14 4
[170,] 14.1764851 4 14
[171,] 14.1911099 14 4
[172,] 14.2846923 20 1
[173,] 14.2864732 1 20
[174,] 14.3199459 20 1
[175,] 14.4427785 19 4
[176,] 14.4565944 19 8
[177,] 14.4617913 8 10
[178,] 14.7528395 10 8
[179,] 14.8585279 8 19
[180,] 15.0703328 19 15
[181,] 15.1331300 4 14
[182,] 15.1622661 4 19
[183,] 15.2694315 19 4
[184,] 15.2915011 13 14
[185,] 15.3272910 14 13
[186,] 15.3341959 19 3
[187,] 15.3462538 3 19
[188,] 15.4825936 19 14
[189,] 15.4834450 19 2
[190,] 15.6103818 9 19
[191,] 15.6120476 9 12
[192,] 15.6295851 7 10
[193,] 15.6695948 10 7
[194,] 15.9103482 7 13
[195,] 15.9170390 13 7
[196,] 16.0641893 1 16
[197,] 16.1209708 15 19
[198,] 16.2848652 9 3
[199,] 16.2943560 3 9
[200,] 16.4173434 3 7
[201,] 16.5179400 2 14
[202,] 16.5520967 2 18
[203,] 16.6079976 7 3
[204,] 16.8327821 3 7
[205,] 16.8442456 7 3
[206,] 17.0729563 3 7
[207,] 17.2442375 3 16
[208,] 17.2570346 6 13
[209,] 17.3825490 6 14
[210,] 17.3904760 13 6
[211,] 17.8592038 6 13
[212,] 17.9480971 6 9
[213,] 17.9755889 9 6
[214,] 18.0575718 9 7
[215,] 18.1110444 7 9
[216,] 18.1175110 7 13
[217,] 18.1337522 13 7
[218,] 18.1342733 7 13
[219,] 18.1803413 12 9
[220,] 18.1961099 9 12
[221,] 18.3310955 12 9
[222,] 18.3399705 9 12
[223,] 18.3661367 9 7
[224,] 18.5503528 9 11
[225,] 18.5778567 11 9
[226,] 18.8006225 9 10
[227,] 18.8156841 9 5
[228,] 18.9797714 20 9
[229,] 18.9856829 9 20
[230,] 19.3623274 20 9
[231,] 19.4822409 20 6
[232,] 19.4837035 6 20
[233,] 19.6907801 6 7
[234,] 19.7746263 7 6
[235,] 19.8448254 11 9
[236,] 19.8498564 9 11
[237,] 20.3588362 13 1
[238,] 20.3937360 1 13
[239,] 20.7143585 13 1
[240,] 20.8831101 5 1
[241,] 20.9277566 5 7
[242,] 20.9664000 7 5
[243,] 21.0251101 19 10
[244,] 21.0762497 3 4
[245,] 21.1337485 3 5
[246,] 21.1360109 5 3
[247,] 21.2567068 1 20
[248,] 21.2942037 20 1
[249,] 21.5313692 20 8
[250,] 21.6592756 8 20
[251,] 21.7492638 20 8
[252,] 21.7801138 8 12
[253,] 21.7859890 18 2
[254,] 21.9924858 2 12
[255,] 22.2278681 12 2
[256,] 22.5366168 2 12
[257,] 22.5634869 12 2
[258,] 22.6113954 13 9
[259,] 22.6127290 14 11
[260,] 22.7570418 2 13
[261,] 22.7724402 20 8
[262,] 22.7971802 8 20
[263,] 22.8361457 20 8
[264,] 22.9348902 20 4
[265,] 22.9445391 4 20
[266,] 23.3084030 20 17
[267,] 23.5412060 17 20
[268,] 23.5582509 20 19
[269,] 23.5683026 19 20
[270,] 23.5724092 19 8
[271,] 23.5786650 15 3
[272,] 23.6734049 3 15
[273,] 23.7595935 3 1
[274,] 23.9045406 3 15
[275,] 23.9309535 3 20
[276,] 23.9633303 20 13
[277,] 24.1163652 20 3
[278,] 24.1432788 20 1
[279,] 24.1560251 20 10
[280,] 24.2184233 2 3
[281,] 24.2289717 3 2
[282,] 24.3901946 2 3
[283,] 24.4836543 2 5
[284,] 24.5044900 5 2
[285,] 24.6129290 5 6
[286,] 24.6442321 6 5
[287,] 24.6456322 20 15
[288,] 24.8366775 13 19
[289,] 24.9105557 13 20
[290,] 24.9333760 20 13
[291,] 24.9598419 13 20
[292,] 24.9743886 20 13
[293,] 25.0231141 20 1
[294,] 25.1839860 15 18
[295,] 25.2049113 2 14
[296,] 25.3595436 14 2
[297,] 25.3859394 1 5
[298,] 25.4557184 5 1
[299,] 25.6627737 5 16
[300,] 25.6814967 16 5
[301,] 25.8621938 5 1
[302,] 25.8715233 1 5
[303,] 25.8790724 1 3
[304,] 25.9104921 3 1
[305,] 25.9158830 1 3
[306,] 25.9529445 12 14
[307,] 26.3410004 9 10
[308,] 26.3635834 10 9
[309,] 26.3840463 18 4
[310,] 26.3849476 4 18
[311,] 26.4480093 10 14
[312,] 26.4503349 15 20
[313,] 26.5089198 15 17
[314,] 26.5439702 15 1
[315,] 26.5708397 1 15
[316,] 26.6148630 10 9
[317,] 26.8251731 9 3
[318,] 26.8506646 9 10
[319,] 26.8573833 9 14
[320,] 26.8763614 14 9
[321,] 26.9295988 15 19
[322,] 27.1231037 19 15
[323,] 27.2656827 19 18
[324,] 27.3819332 18 19
[325,] 27.4470771 19 18
[326,] 27.4563781 9 14
[327,] 27.5544638 8 4
[328,] 27.6148851 4 8
[329,] 27.6380477 8 4
[330,] 27.6837953 17 15
[331,] 27.6934055 15 17
[332,] 27.7313286 15 2
[333,] 27.7480240 15 17
[334,] 27.8184972 1 16
[335,] 27.8883242 4 5
[336,] 28.0180360 10 19
[337,] 28.0539273 10 12
[338,] 28.0998525 10 5
[339,] 28.1526730 5 10
[340,] 28.1536988 10 5
[341,] 28.5549702 13 1
[342,] 28.5710334 1 13
[343,] 28.7197885 1 3
[344,] 28.8085824 13 15
[345,] 28.8426774 12 10
[346,] 28.9170285 10 12
[347,] 28.9217102 6 5
[348,] 28.9581813 6 2
[349,] 28.9651310 4 2
[350,] 29.2836388 2 4
[351,] 29.4320264 4 2
[352,] 29.4770327 4 15
[353,] 29.6631949 16 19
[354,] 29.6702412 19 16
[355,] 29.6951954 19 13
[356,] 29.7267453 8 20
[357,] 29.9812899 8 4
[358,] 30.1750302 4 8
[359,] 30.3043296 8 4
[360,] 30.6136619 4 8
[361,] 30.7650215 10 2
[362,] 30.8648773 2 10
[363,] 31.0414887 6 7
[364,] 31.1730556 7 6
[365,] 31.3341690 11 18
[366,] 31.3430946 6 7
[367,] 31.4504000 19 17
[368,] 31.4835275 17 19
[369,] 31.4909248 17 13
[370,] 31.4917091 17 19
[371,] 31.6178568 10 20
[372,] 31.6619567 20 10
[373,] 31.7700191 14 3
[374,] 31.7948882 14 19
[375,] 31.8572295 13 18
[376,] 31.9031423 18 13
[377,] 31.9591465 18 15
[378,] 31.9969774 18 17
[379,] 32.0711292 17 18
[380,] 32.0917431 18 17
[381,] 32.2856549 3 8
[382,] 32.2892164 1 5
[383,] 32.3318823 1 8
[384,] 32.3420985 8 1
[385,] 32.3937402 2 6
[386,] 32.4129033 2 10
[387,] 32.4519818 10 9
[388,] 32.5104115 9 10
[389,] 32.5169152 9 13
[390,] 32.5338193 9 10
[391,] 32.5540457 9 13
[392,] 32.6596578 13 9
[393,] 32.6609775 13 14
[394,] 32.7359742 13 19
[395,] 32.7829239 19 3
[396,] 32.7840019 3 19
[397,] 32.8713800 3 14
[398,] 32.9126571 14 3
[399,] 32.9915807 9 11
[400,] 33.1295628 9 10
[401,] 33.2681432 9 17
[402,] 33.2761508 9 19
[403,] 33.2953455 9 1
[404,] 33.3093463 9 10
[405,] 33.8507399 10 16
[406,] 33.8951437 16 10
[407,] 33.9529143 10 16
[408,] 33.9763259 10 14
[409,] 33.9863442 10 1
[410,] 34.0122102 1 10
[411,] 34.0463955 1 6
[412,] 34.0981080 18 2
[413,] 34.1145135 3 1
[414,] 34.1528553 6 4
[415,] 34.1892474 4 6
[416,] 34.2094938 8 2
[417,] 34.3150009 8 16
[418,] 34.3517216 8 9
[419,] 34.3543253 9 8
[420,] 34.3566435 8 9
[421,] 34.4096525 14 20
[422,] 34.4220841 2 18
[423,] 34.5131054 2 15
[424,] 34.5179834 2 19
[425,] 34.6441076 2 4
[426,] 34.6480082 4 2
[427,] 34.6611058 4 11
[428,] 34.7331745 1 2
[429,] 34.7506194 2 1
[430,] 34.8680460 5 18
[431,] 34.8810290 18 5
[432,] 35.0154235 18 16
[433,] 35.1122634 16 18
[434,] 35.1295605 18 16
[435,] 35.1628239 9 17
[436,] 35.1909379 17 9
[437,] 35.3548273 9 17
[438,] 35.4322083 17 4
[439,] 35.4501877 17 9
[440,] 35.5247284 17 3
[441,] 35.5318627 3 17
[442,] 35.6773303 3 9
[443,] 35.7700170 3 20
[444,] 35.9085830 3 17
[445,] 35.9585455 3 20
[446,] 35.9595091 20 3
[447,] 36.0532763 20 17
[448,] 36.1057002 20 13
[449,] 36.1267230 5 18
[450,] 36.1563699 18 5
[451,] 36.4027720 16 8
[452,] 36.5278048 16 20
[453,] 36.6579870 20 16
[454,] 36.7172370 17 4
[455,] 36.8872023 4 17
[456,] 37.0890476 17 4
[457,] 37.2072316 4 6
[458,] 37.2177989 4 17
[459,] 37.2934035 17 4
[460,] 37.3811070 4 17
[461,] 37.4893212 4 9
[462,] 37.5153543 9 4
[463,] 37.5415295 18 16
[464,] 37.5759185 16 13
[465,] 37.6017381 13 16
[466,] 37.7705563 13 20
[467,] 38.2291898 13 10
[468,] 38.3334459 10 13
[469,] 38.4342888 6 17
[470,] 38.5179353 17 7
[471,] 38.7449630 4 13
[472,] 38.7740718 13 4
[473,] 38.8981043 7 17
[474,] 38.9490861 7 16
[475,] 39.0584144 16 7
[476,] 39.1649706 7 16
[477,] 39.2239523 7 15
[478,] 39.3160241 17 6
[479,] 39.5082804 17 7
[480,] 39.5855965 7 13
[481,] 39.5973459 13 20
[482,] 39.6351402 3 12
[483,] 39.7718926 3 20
[484,] 39.8426084 2 20
[485,] 39.8622136 20 2
[486,] 39.9569556 10 9
[487,] 40.1127321 9 10
[488,] 40.1536801 18 10
[489,] 40.2255910 7 6
[490,] 40.2272074 6 7
[491,] 40.2599519 13 7
[492,] 40.3027269 2 1
[493,] 40.3635926 2 20
[494,] 40.3947945 20 2
[495,] 40.4312624 2 20
[496,] 40.4396008 20 2
[497,] 40.4898071 14 10
[498,] 40.6100433 10 18
[499,] 40.6364722 18 10
[500,] 40.7144307 10 18
[501,] 40.8328973 10 4
[502,] 40.8530192 15 7
[503,] 40.8641262 15 4
[504,] 40.9326685 15 20
[505,] 41.0360283 20 15
[506,] 41.0818300 20 4
[507,] 41.1121949 20 5
[508,] 41.2732712 5 20
[509,] 41.3171535 5 14
[510,] 41.3831699 14 5
[511,] 41.4600994 14 12
[512,] 41.4777946 14 4
[513,] 41.5050508 7 15
[514,] 41.5052566 1 3
[515,] 41.5397010 3 16
[516,] 41.5769081 3 19
[517,] 41.5819809 15 2
[518,] 41.5851101 2 15
[519,] 41.6023613 15 16
[520,] 41.6068314 2 3
[521,] 41.7873260 3 2
[522,] 41.9382777 2 3
[523,] 41.9569746 3 2
[524,] 41.9728778 2 3
[525,] 41.9750713 2 9
[526,] 42.0204511 9 2
[527,] 42.1750867 9 3
[528,] 42.2161147 3 9
[529,] 42.2297397 9 3
[530,] 42.3255960 5 3
[531,] 42.4227911 5 10
[532,] 42.4676809 14 5
[533,] 42.5329359 11 13
[534,] 42.5701089 13 11
[535,] 42.6716845 8 7
[536,] 42.6900568 7 8
[537,] 42.8975914 7 13
[538,] 42.9325214 13 7
[539,] 42.9428758 6 16
[540,] 42.9548842 5 14
[541,] 43.0042786 5 11
[542,] 43.0992647 11 5
[543,] 43.1257381 16 6
[544,] 43.3891977 4 16
[545,] 43.4003161 4 2
[546,] 43.4955178 2 4
[547,] 43.5399652 2 19
[548,] 43.5958527 19 2
[549,] 43.6702128 2 18
[550,] 43.7902078 18 2
[551,] 43.8254534 18 9
[552,] 43.8834585 9 18
[553,] 44.0695929 18 9
[554,] 44.5836345 18 4
[555,] 44.8796521 3 8
[556,] 44.9155000 8 3
[557,] 44.9606795 8 12
[558,] 45.0085411 12 8
[559,] 45.0745201 8 12
[560,] 45.0823571 16 4
[561,] 45.0871409 4 16
[562,] 45.0911252 15 2
[563,] 45.1867028 3 8
[564,] 45.2768829 4 6
[565,] 45.4789807 6 4
[566,] 45.4900682 6 7
[567,] 45.5039850 7 6
[568,] 45.5497765 6 7
[569,] 45.6029949 6 10
[570,] 45.6056295 6 4
[571,] 45.6588613 18 7
[572,] 45.6611039 15 13
[573,] 45.7027269 15 18
[574,] 45.7053350 18 15
[575,] 45.7674247 15 18
[576,] 45.8020391 15 5
[577,] 46.0778106 5 6
[578,] 46.1071622 6 5
[579,] 46.1080589 5 6
[580,] 46.1490436 10 6
[581,] 46.1691319 19 2
[582,] 46.3703765 8 7
[583,] 46.4071231 8 10
[584,] 46.5030231 16 8
[585,] 46.5363165 8 16
[586,] 46.6442121 8 5
[587,] 46.6444168 20 7
[588,] 46.6501200 7 20
[589,] 46.7511316 20 7
[590,] 46.7967767 7 20
[591,] 46.8288981 7 8
[592,] 46.9395512 2 1
[593,] 46.9759281 1 2
[594,] 47.0500484 1 16
[595,] 47.1180004 1 5
[596,] 47.1806417 5 1
[597,] 47.4092114 8 19
[598,] 47.6157842 17 8
[599,] 47.6426026 8 17
[600,] 47.6964853 17 4
[601,] 47.7540529 4 17
[602,] 47.8678685 4 10
[603,] 47.8746077 4 6
[604,] 47.8832622 6 4
[605,] 47.9066844 6 7
[606,] 47.9103155 6 4
[607,] 47.9486072 4 2
[608,] 48.1365235 2 4
[609,] 48.1615780 4 3
[610,] 48.1816496 16 4
[611,] 48.2445358 11 5
[612,] 48.3090376 5 11
[613,] 48.3689472 19 6
[614,] 48.3796791 6 19
[615,] 48.3811114 6 8
[616,] 48.5046934 8 6
[617,] 48.8089886 9 10
[618,] 48.8142084 10 9
[619,] 48.9103383 10 4
[620,] 49.1905268 4 10
[621,] 49.3159817 4 20
[622,] 49.3286881 13 10
[623,] 49.3390245 10 13
[624,] 49.3495440 10 8
[625,] 49.5351129 10 14
[626,] 49.5702665 14 7
[627,] 49.6859966 14 5
[628,] 49.8167083 7 18
[629,] 49.8387285 7 13
[630,] 49.8805012 7 14
[631,] 49.9559317 14 7
[632,] 50.0062988 7 18
[633,] 50.0250681 18 7
[634,] 50.0444724 14 7
[635,] 50.0571854 8 11
[636,] 50.0872506 8 6
[637,] 50.1239492 9 6
[638,] 50.1352551 6 9
[639,] 50.1475510 6 10
[640,] 50.2100534 12 16
[641,] 50.2296226 16 12
[642,] 50.7118727 7 14
[643,] 51.0499391 14 7
[644,] 51.1000967 6 9
[645,] 51.1030595 9 6
[646,] 51.3225780 8 16
[647,] 51.3644111 16 8
[648,] 51.5621604 8 16
[649,] 51.6605795 16 8
[650,] 51.8078117 16 6
[651,] 51.9342197 6 16
[652,] 52.1516087 10 6
[653,] 52.4184928 10 20
[654,] 52.6962118 16 7
[655,] 52.7799093 7 16
[656,] 52.8842754 15 17
[657,] 52.9440578 17 15
[658,] 53.0165125 7 16
[659,] 53.2153132 17 18
[660,] 53.2226518 3 20
[661,] 53.3076277 20 3
[662,] 53.3533058 3 20
[663,] 53.3665635 20 6
[664,] 53.6463135 6 20
[665,] 53.6742425 18 17
[666,] 53.9752778 17 18
[667,] 54.1710773 9 2
[668,] 54.3845464 9 18
[669,] 54.4013738 9 12
[670,] 54.6077034 12 9
[671,] 54.7498754 5 16
[672,] 54.7642237 5 6
[673,] 54.9593488 5 20
[674,] 55.0086062 20 5
[675,] 55.0592746 5 20
[676,] 55.0985405 5 9
[677,] 55.1086941 9 5
[678,] 55.1268444 11 9
[679,] 55.1827019 9 11
[680,] 55.1974932 11 9
[681,] 55.2493971 9 15
[682,] 55.3385465 9 6
[683,] 55.4786241 6 9
[684,] 55.5277270 9 6
[685,] 55.8172419 9 4
[686,] 55.9024692 4 9
[687,] 55.9679248 4 6
[688,] 55.9698699 4 9
[689,] 56.0101293 4 6
[690,] 56.0193832 4 16
[691,] 56.1502882 4 18
[692,] 56.4316135 18 4
attr(,"n")
[1] 20
# Plot the network structure of the simulations, and the
# observed data
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
vertex.cex = 2, edge.lwd = ClassNet^0.75,
ClassIsTeacher, main = "Observed Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 +
^3))
ClassNet))<- as.sociomatrix.eventlist(ClassSim, 20) #Create a network from the fitted sim
SimNet gplot(SimNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
vertex.cex = 2, edge.lwd = SimNet^0.75, main = "Simulated Network",
ClassIsTeacher, edge.col = rgb(0, 0, 0, (1 - 1/(1 + SimNet))^3))
<- as.sociomatrix.eventlist(AnarchSim, 20) #Create a network from the anarchy sim
AnarchNet gplot(AnarchNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
vertex.cex = 2, edge.lwd = AnarchNet^0.75,
ClassIsTeacher, main = "Anarchic Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 +
^3))
AnarchNet))
# Plot the valued degree distributions
plot(density(degree(ClassNet), bw = "SJ"), lwd = 3, main = "Degree Distribution")
lines(density(degree(SimNet), bw = "SJ"), lwd = 3, col = 2)
lines(density(degree(AnarchNet), bw = "SJ"), lwd = 3, col = 4)
legend("topright", legend = c("Obs", "Sim", "Anarch"), lwd = 3,
col = c(1, 2, 4))
Comparing the plots, we can see several things. First, we note some limitations of our fitted model: while it does relatively well at ensuring that the teachers are central, enduring that many of the strongest interactions are student-teacher interactions, creating a network in which strong interactions are localized to a fairly small number of (highly reciprocal) dyads, and reproducing the overall valued degree distribution, it also produces a large “halo” of weak side-interactions among the students that is not seen in the observed network. This suggests the potential for further model improvement.
Turning to our “anarchy in the classroom” model, however, we see that the effect of removing teachers is substantively reasonable. The nodes that were formerly teachers no longer have any particular significance, and are now well-mixed with their peers; likewise, without the teachers to focus attention, the network is as a whole much less centralized. Thus, the model does plausibly produce many of the effects one would expect to see from such a change in group composition. Such scenario-based probes can be a useful tool for assessing model behavior, as well as being of possible substantive interest in and of themselves.
We have seen how the simulate
command can be used to simulate draws from fitted rem.dyad
objects, and even how these may be modified by switching coefficients or covariates for particular purposes. What if we want to create a de novo simulation? This can also be done, using rem.dyad
to create a model skeleton that can subsequently be used for simulation.
To set up a REM for simulation, we need to create an object that records the system size (i.e., number of vertices), effects involved, and other critical information. When we fit models using `rem.dyad’’, this information was encoded in the model object. In the de novo case, we use the same approach - except that we simply omit the data!
To see how this is done, let’s consider an example. Let us say that we want to create a model for a 25-node REM with a baseline intercept, an AB-BA P-shift, and a recency effect of sending on future sending (RSndSnd
). We then proceed by creating a model just as we would normally, but with NULL
where the data should be:
<- rep(1, 25)
ModInt <- rem.dyad(NULL, n = 25, effects = c("CovSnd", "PSAB-BA",
modskel "RSndSnd"), covar = list(CovSnd = ModInt))
NULL edgelist passed to rem.dyad - creating model skeleton.
Checking/prepping covariates.
modskel
Relational Event Model
Model skeleton (not fit)
Embedded coefficients:
RSndSnd CovSnd.1 PSAB-BA
0.0007478403 -0.0007507346 0.0011755427
Note that the model is correctly identified as a skeleton, with a reminder that it was not fit to data. It also comes equipped with “default” coefficients, but these are not very useful: if a seed coefficient is not passed, rem.dyad
always initializes with perturbed coefficients near zero. If one knows what coefficients one wants to embed in the skeleton, one can set them using the coef.seed
argument.
Note that none of the inferential or other arguments to rem.dyad
are needed here, since no fitting is done. Perhaps less obviously, we do not need to set the ordinal
variable, since all REM simulation is done in continuous time. (The resulting trajectories can, of course, be interpreted ordinally, if the pacing constant used was arbitrary.)
Simulation from the model skeleton is then performed just as simulation with fitted model objects, except that one needs to pass the number of draws to take (nsim
, which was optional before) and coef
(unless one already embedded the coefficients one wants in the model object). Be sure to enter your coefficients in the order stored in the skeleton, which may not be the order you initially specified the effects! Let’s see how this works, using our example:
set.seed(1331)
<- simulate(modskel, nsim = 100, coef = c(0.25, -1, 4),
modsim covar = list(CovSnd = ModInt))
head(modsim) #See the trajectory
[,1] [,2] [,3]
[1,] 0.003446229 20 2
[2,] 0.004616100 9 6
[3,] 0.005879407 25 17
[4,] 0.007751835 10 23
[5,] 0.009434835 9 20
[6,] 0.015124865 14 23
grecip(as.sociomatrix.eventlist(modsim, 25), measure = "edgewise") #Relatively reciprocal
Mut
0.2444444
Any number of events may be simulated in this way.
Time-varying covariates must, by definition, be specified at each time step. rem.dyad
understands several covariate formats (see ?rem.dyad
):
CovSnd
, CovRec
, or CovInt
, a vector or single-column matrix/array. For CovEvent
, an n
by n
matrix or array.CovSnd
, CovRec
, or CovInt
, a two-dimensional n
by p
matrix/array whose columns contain the respective covariates. For CovEvent
, a p
by n
by n
array, whose first dimension indexes the covariate matrices.CovSnd
, CovRec
, or CovInt
, an m
by n
by p
array whose respective dimensions index time (i.e., event number), covariate, and actor. For CovEvent
, a m
by p
by n
by n
array, whose dimensions are analogous to the previous case.Thus, in the time-varying case, the dimensions of the covariate object must be consistent with nsim
. Let’s see a simple example, involving a 10-person group with an initial activity covariate that decays with time. We will simulate for 100 time steps, so need to create a 100 by 1 by 10 matrix to hold the covariate (the ith slice containing the covariate values ``going into’’ the ith event). When creating the skeleton, it is currently necessary to pass covariates as if they are static, since there are not yet multiple time points; the checks that are performed to ensure that the covariates are legal will object if too many time points are given. (This will probably change in the future.) The time-varying version is then passed to the simulator.
set.seed(1331)
# Set up the model
<- array(sweep(sapply(1:10, rep, 100), 1, 1/1.05^(0:99),
tcovar "*"), dim = c(100, 10, 1))
<- rep(1, 10)
SndInt # Note that, in making the skeleton, we need to pass the
# covariates as if they are static - that's because the
# model doesn't contain time points yet.
<- rem.dyad(NULL, n = 10, effects = c("CovSnd", "CovInt"),
modskel2 coef.seed = c(-1, 1), covar = list(CovSnd = SndInt, CovInt = tcovar[1,
1])) ,
NULL edgelist passed to rem.dyad - creating model skeleton.
Checking/prepping covariates.
# Simulate draws
<- simulate(modskel2, nsim = 100, covar = list(CovSnd = SndInt,
modsim2 CovInt = tcovar))
# Note that dynamics slow down, and participation evens out
plot(diff(modsim2[, 1]), col = hsv(modsim2[, 2]/10 * 0.6), pch = 19,
ylab = "Inter-event Time")
lines(supsmu(x = 2:100, y = diff(modsim2[, 1])))
On average, dynamics slow down, as we would expect, and more low-numbered (redder) vertices interact after the initial period.
Butts, Carter T. (2008). “A Relational Event Framework for Social Action.” Sociological Methodology, 38(1), 155-200.
Butts, Carter T. and Marcum, Christopher S. (2017). “A Relational Event Approach to Modeling Behavioral Dynamics.” In Andrew Pilney and Marshall Scott Poole (Eds.), Group Processes: Data-Driven Computational Approaches. Springer.
Butts, Carter T.; Petrescu-Prahova, Miruna; and Cross, B. Remy. (2007). “Responder Communication Networks in the World Trade Center Disaster: Implications for Modeling of Communication Within Emergency Settings.” Journal of Mathematical Sociology, 31(2), 121-147.
Marcum, Christopher S. and Butts, Carter T. (2015). “Constructing and Modifying Sequence Statistics for relevent
using informR
in R
.” Journal of Statistical Software, 64(5). [https://doi.org/10.18637/jss.v064.i05]
Bender-deMoll, Skye and McFarland, Daniel A. (2006). ``The Art and Science of Dynamic Network Visualization.’’ Journal of Social Structure, 7. [https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/]