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The network modeling software demonstrated in this tutorial is authored by Pavel Krivitsky (ergm) and
Carter Butts (network and sna).

The statnet Project
All statnet packages are open-source, written for the R computing environment, and published on CRAN.
The source repositories are hosted on GitHub. Our website is statnet.org

• Need help? For general questions and comments, please email the statnet users group at statnet_he
lp@uw.edu. You’ll need to join the listserv if you’re not already a member. You can do that here:
statnet_help listserve.

• Found a bug in our software? Please let us know by filing an issue in the appropriate package GitHub
repository, with a reproducible example.
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• Want to request new functionality? We welcome suggestions – you can make a request by filing an issue
on the appropriate package GitHub repository. The chances that this functionality will be developed
are substantially improved if the requests are accompanied by some proposed code (we are happy to
review pull requests).

• For all other issues, please email us at contact@statnet.org.

Introduction to this workshop/tutorial.
This workshop and tutorial provide an introduction to statistical modeling of network data with exponential-
family random graph models (ERGMs) using statnet software. This online tutorial is also designed for
self-study, with example code and self-contained data. The statnet packages we will be demonstrating are:

• network — storage and manipulation of network data
• ergm — statistical tools for estimating ERGMs, model assessment, and network simulation.

The ergm package has more advanced functionality that is not covered in this workshop. An overview can be
found in this preprint.

Prerequisites

This workshop assumes basic familiarity with R; experience with network concepts, terminology and data;
and familiarity with the general framework for statistical modeling and inference. While previous experience
with ERGMs is not required, some of the topics covered here may be difficult to understand without a strong
background in linear and generalized linear models in statistics.

Software installation

Minimally, you will need to install the latest version of R (available here) and the statnet packages ergm
and network to run the code presented here (ergm will automatically install network when it is loaded).
The workshops are conducted using the free version of Rstudio (available here).

The full set of installation intructions with details can be found on the statnet workshop wiki.

If you have not already downloaded the statnet packages for this workshop, the quickest way to install these
(and the other most commonly used packages from the statnet suite), is to open an R session and type:
install.packages('ergm')

library(ergm)

Loading required package: network

'network' 1.18.1 (2023-01-24), part of the Statnet Project
* 'news(package="network")' for changes since last version
* 'citation("network")' for citation information
* 'https://statnet.org' for help, support, and other information

'ergm' 4.5.0 (2023-05-27), part of the Statnet Project
* 'news(package="ergm")' for changes since last version
* 'citation("ergm")' for citation information
* 'https://statnet.org' for help, support, and other information

'ergm' 4 is a major update that introduces some backwards-incompatible
changes. Please type 'news(package="ergm")' for a list of major
changes.

You can check the version number with:
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packageVersion("ergm")

[1] '4.5.0'

Throughout, we will set a random seed via set.seed() for commands in tutorial that require simulating
random values—this is not necessary, but it ensures that you will get the same results as this tutorial
(assuming that you are using the same ergm version or at least a version in which the algorithms you are
using have not changed).

1. Statistical network modeling with ERGMs
Here we provide only a brief overview of the modeling framework, as the primary purpose of this tutorial
is to show how to implement statistical analysis of network data with ERGMs using the statnet software
tools, rather than to explain the framework in detail. For more details, and to really understand ERGMs,
please see the references at the end of this tutorial.

Exponential-family random graph models (ERGMs) are a general class of models based in exponential-family
theory for specifying the probability distribution for a set of random graphs or networks. Within this
framework, one can, among other tasks:

• Define a model for a network that includes covariates representing features like homophily, mutuality,
triad effects, and a wide range of other structural features of interest;

• Obtain maximum-likehood estimates for the parameters of the specified model for a given data set;

• Test individual coefficients, assess models for convergence and goodness-of-fit, and perform various
types of model comparison; and

• Simulate new networks from the underlying probability distribution implied by the fitted model.

The general form for an ERGM

ERGMs are a class of models, superficially resembling linear regression or GLMs. The general form of the
model specifies the probability of the entire network (the left hand side), as a function of terms that represent
network features we hypothesize may occur more or less likely than expected by chance (the right hand side).
The general form of the model is

Pr(Y = y) = exp[θ⊤g(y)]h(y)
k(θ)

where

• Y is the random variable for the state of the network and y is a particular realization Y could take,

• g(y) is a vector of model statistics for network y,

• h(y) is the reference measure (which defines the baseline behavior of the model when θ = 0)

• θ is the vector of coefficients for those statistics, and

• k(θ) is the summation of the numerator’s value over the set of all possible networks y, typically taken
to be all networks with the same node set as the observed network.

In particular, the model implies that the probability attached to a network y only depends on the network
via the vector of statistics g(y). Among other things, this means that maximum likelihood estimation may be
carried out even if we don’t observe the network itself, as long as we know the observed value of g(y).

If you’re not familiar with the compact notation above, the numerator represents a formula that is linear in
the log form:
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log(exp[θ⊤g(y)]) = θ1g1(y) + θ2g2(y) + ... + θpgp(y)
where p is the number of terms in the model. From this one can more easily observe the analogy to a
traditional statistical model: the coefficients θ represent the size and direction of the effects of the covariates
g(y) on the overall probability of the network.

h(y) is important for specifying model behavior for valued ERGMs, for controlling for network size in
extrapolative or multi-network settings, and other applications. When modeling single, unvalued networks,
however, it is common to take h(y) ∝ 1 (the counting measure). We will adopt that convention here. Under
the counting measure, the baseline behavior of an ERGM approaches a uniform random graph when θ → 0,
and the ERGM terms serve to modify this baseline distribution. We will see many examples below.

The model statistics g(y): ERGM terms

The statistics g(y) can be thought of as the “covariates” in the model. In the network modeling context,
these represent network features like density, homophily, triads, etc. In one sense, they are like covariates you
might use in other statistical models. But they are different in one important respect: these g(y) statistics
are functions of the network itself — each is defined by the frequency of a specific configuration of dyads
observed in the network — so they are not measured by a question you include in a survey (e.g., the income
of a node), but instead need to be computed on the specific network you have, after you have collected the
data.

As a result, every term in an ERGM must have an associated algorithm for computing its value for your
network. The ergm package in statnet includes about 150 term-computing algorithms. We will explore
some of these terms in this tutorial, and links to more information are provided in section 3.

You can get an up-to-date list of all available terms, and the syntax for using them, by typing ?ergmTerm.
When using RStudio, it is possible to press the tab key after starting a line with ?ergm to view the wide
range of possible help options beginning with the letters ergm.

Available keywords and their meanings can be obtained by typing ?ergmKeyword. You can also search for
terms with keywords, as in
search.ergmTerms(keyword='curved')

Found 8 matching ergm terms:
altkstar(lambda, fixed=FALSE) (binary)

Alternating k-star

gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary)
Geometrically weighted degree distribution for the first mode in a bipartite network

gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary)
Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition

gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary)
Geometrically weighted degree distribution for the second mode in a bipartite network

gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary)
Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition

gwdegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary)
Geometrically weighted degree distribution

gwidegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary)
Geometrically weighted in-degree distribution
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gwodegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary)
Geometrically weighted out-degree distribution

To obtain help for a specific term, use either help("[name]-ergmTerm") or the shorthand version
ergmTerm?[name], where [name] is the name of the term.

For more guidance on ergm terms, there is a vignette in the ergm package entitled ergm-term-crossRef.Rmd
that can be compiled as an RMarkdown document.

One key categorization of model terms is worth keeping in mind: terms are either dyad independent or dyad
dependent. Dyad independent terms (like nodal homophily terms) imply no dependence between dyads—the
presence or absence of a tie may depend on nodal attributes, but not on the state of other ties. Dyad
dependent terms (like degree terms, or triad terms), by contrast, imply dependence between dyads. Dyad
dependent terms have very different effects, and much of what is different about network models comes
from these terms. They introduce complex cascading effects that can often lead to counter-intuitive and
highly non-linear outcomes. In addition, a model with at least one dyad dependent term requires a different
estimation algorithm, so when we use these terms below you will see some different components in the output.

ERGM probabilities: at the tie level

The ERGM expression for the probability of the entire graph shown above can be re-expressed in terms of
the conditional log-odds (that is, the logit of the conditional probability) of a single tie between two actors:

logit P (Yij = 1|yc
ij) = θ⊤δij(y),

where

• Yij is the random variable for the state of the actor pair i, j (with realization yij), and

• yc
ij signifies the complement of yij , i.e. the entire network y except for yij .

• δij(y) is a vector of the “change statistics” for each model term. The change statistic records how the
g(y) term changes if the yij tie is toggled from off to on while fixing the rest of the network. So

δij(y) = g(y+
ij) − g(y−

ij),

where

• y+
ij is defined as yc

ij along with yij set to 1, and

• y−
ij is defined as yc

ij along with yij set to 0.

So δij(y) equals the value of g(y) when yij = 1 minus the value of g(y) when yij = 0, but all other dyads
are as in y. When this vector of change statistics is multiplied by the vector of coefficients θ, the equation
above shows that this dot product is the log-odds of the tie between i and j, conditional on all other dyads
remaining the same.

In other words, for an individual statistic, its change value for Yij times its corresponding coefficient can be
interpreted as that term’s contribution to the log-odds of that tie, conditional on all other dyads remaining
the same.

We will see exactly how this works in the sections that follow.

Loading network data

Network data can come in many different forms — ties can be stored as edgelists or sociomatrices in .csv
files, or as exported data from other programs like Pajek. Attributes for the nodes, ties, and dyads can also
come in various forms. All can be read into R using either standard R tools (e.g., for .csv files), or methods
from the network package. For more information, refer to the following:
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?read.paj
?read.paj.simplify
?loading.attributes

However you read them in, the data will need to be transformed into a network object, the format that
Statnet packages use to store and work with network data. For information on how to do this, refer to:
?network

The ergm package also contains several network data sets, and we will use those here for demonstration
purposes.
data(package='ergm') # tells us the datasets in our packages

We’ll start with Padgett’s data on Renaissance Florentine families for our first example. As with all data
analysis, it is good practice to start by summarizing our data using graphical and numerical descriptives.
set.seed(123) # The plot.network function uses random values
data(florentine) # loads flomarriage and flobusiness data
flomarriage # Equivalent to print.network(flomarriage): Examine properties

Network attributes:
vertices = 16
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 20

missing edges= 0
non-missing edges= 20

Vertex attribute names:
priorates totalties vertex.names wealth

No edge attributes
par(mfrow=c(1,2)) # Set up a 2-column (and 1-row) plot area
plot(flomarriage,

main="Florentine Marriage",
cex.main=0.8,
label = network.vertex.names(flomarriage)) # Equivalent to plot.network(...)

wealth <- flomarriage %v% 'wealth' # %v% references vertex attributes
wealth

[1] 10 36 55 44 20 32 8 42 103 48 49 3 27 10 146 48
plot(flomarriage,

vertex.cex=wealth/25, # Make vertex size proportional to wealth attribute
main="Florentine marriage by wealth", cex.main=0.8)
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Florentine Marriage

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi Peruzzi

Pucci

RidolfiSalviati Strozzi

Tornabuoni

Florentine marriage by wealth

The summary and ergm functions, and supporting functions

We’ll start by running some simple models to demonstrate the most commonly used functions for ERG
modeling.

The syntax for specifying a model in the ergm package follows R’s formula convention:

my.network ∼ my.model.terms

This syntax is used for both the summary and ergm functions. The summary function simply returns the
numerical values of the network statistics in the model. The ergm function estimates the model with those
statistics.

It is good practice to run a summmary command on any model before fitting it with ergm. This is the ERGM
equivalent of performing some descriptive analysis on your covariates. This can help you make sure you
understand what the term represents, and it can help to flag potential problems that will lead to poor
modeling results. We will now demonstrate the summary and ergm commands using a simple model.

A Bernoulli (“Erdős/Rényi”) model We begin with a simple model, containing only one term that
represents the total number of edges in the network,

∑
yij . The name of this ergm-term is edges, and when

included in an ERGM its coefficient controls the overall density of the network.
summary(flomarriage ~ edges) # Calculate the edges statistic for this network

edges
20

flomodel.01 <- ergm(flomarriage ~ edges) # Estimate the model

Starting maximum pseudolikelihood estimation (MPLE):

Obtaining the responsible dyads.

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.
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summary(flomodel.01) # Look at the fitted model object

Call:
ergm(formula = flomarriage ~ edges)

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -1.6094 0.2449 0 -6.571 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 119 degrees of freedom

AIC: 110.1 BIC: 112.9 (Smaller is better. MC Std. Err. = 0)

This simple model specifies a single homogeneous probability for all ties, which is captured by the coefficient
of the edges term. How should we interpret the above estimate θ̂ of this coefficient? The easiest way is to
return to the logit form of the ERGM. The log-odds that a tie—any tie, since the change statistic for the
edges term equals one for all yij—is present is

logit(p) = θ̂ × δij(y)
= −1.61 × change in g(y) when yij goes from 0 to 1
= −1.61 × 1.

Do you see why δij(y) = 1 no matter which i and j you specify?

To convert logit(p) to p, we take the inverse logit of θ̂:

= exp(−1.61)/(1 + exp(−1.61))
= 0.167

This probability corresponds to the density we observe in the flomarriage network: there are 20 ties and(16
2

)
= (16 × 15)/2 = 120 dyads, so the density of ties is 20/120 = 0.167.

Triad formation Let’s add a term often thought to be a measure of “clustering”: the number of completed
triangles in the network, or 1

3
∑

yijyikyjk. The name for this ergm-term is triangle.

This is an example of a dyad dependent term, as the status of any triangle containing dyad yij depends on the
status of dyads of the form yik and yjk. This means that any model containing the ergm-term triangle has
the property that dyads are not probabilistically independent of one another. As a result, ergm automatically
uses its stochastic MCMC-based estimation algorithm, so your results may differ slightly unless you use the
same set.seed value:
set.seed(321)
summary(flomarriage~edges+triangle) # Look at the g(y) statistics for this model

edges triangle
20 3

flomodel.02 <- ergm(flomarriage~edges+triangle) # Estimate the theta coefficients
summary(flomodel.02)

Call:
ergm(formula = flomarriage ~ edges + triangle)
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Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -1.6900 0.3620 0 -4.668 <1e-04 ***
triangle 0.1901 0.5982 0 0.318 0.751
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 118 degrees of freedom

AIC: 112.1 BIC: 117.6 (Smaller is better. MC Std. Err. = 0.01102)

Now, how should we interpret coefficients?

The conditional log-odds of two actors having a tie, keeping the rest of the network fixed, is

−1.69 × change in the number of ties + 0.19 × change in number of triangles.

• For a tie that will create no triangles, the conditional log-odds is −1.69.

• For a tie that will create one triangle: −1.69 + 0.19 = −1.5

• For a tie that will create two triangles: −1.69 + 2 × 0.19 = −1.31

• the corresponding probabilities are shown here (note the use of the plogis and coef functions):
plogis(coef(flomodel.02)[[1]] + (0:2) * coef(flomodel.02)[[2]])

[1] 0.1557799 0.1824455 0.2125265

Let’s take a closer look at the ergm object that the function outputs:
class(flomodel.02) # this has the class ergm

[1] "ergm"
names(flomodel.02) # the ERGM object contains lots of components.

[1] "coefficients" "sample" "iterations" "MCMCtheta"
[5] "loglikelihood" "gradient" "hessian" "covar"
[9] "failure" "newnetwork" "coef.init" "est.cov"

[13] "coef.hist" "stats.hist" "steplen.hist" "control"
[17] "etamap" "MCMCflag" "nw.stats" "call"
[21] "network" "ergm_version" "info" "MPLE_is_MLE"
[25] "drop" "offset" "estimable" "formula"
[29] "reference" "constraints" "obs.constraints" "estimate"
[33] "estimate.desc" "null.lik" "mle.lik"
coef(flomodel.02) # you can extract/inspect individual components

edges triangle
-1.689969 0.190103

Nodal covariates: effects on mean degree We saw earlier that wealth appeared to be associated with
higher degree in this network. We can use ergm to test this. Wealth is a nodal covariate, so we use the
ergm-term nodecov.
summary(wealth) # summarize the distribution of wealth
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Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 17.50 39.00 42.56 48.25 146.00

# plot(flomarriage,
# vertex.cex=wealth/25,
# main="Florentine marriage by wealth",
# cex.main=0.8) # network plot with vertex size proportional to wealth
summary(flomarriage~edges+nodecov('wealth')) # observed statistics for the model

edges nodecov.wealth
20 2168

flomodel.03 <- ergm(flomarriage~edges+nodecov('wealth'))

Starting maximum pseudolikelihood estimation (MPLE):

Obtaining the responsible dyads.

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.
summary(flomodel.03)

Call:
ergm(formula = flomarriage ~ edges + nodecov("wealth"))

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.594929 0.536056 0 -4.841 <1e-04 ***
nodecov.wealth 0.010546 0.004674 0 2.256 0.0241 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 103.1 on 118 degrees of freedom

AIC: 107.1 BIC: 112.7 (Smaller is better. MC Std. Err. = 0)

And yes, there is a significant positive wealth effect on the probability of a tie.

What does the value of the nodecov statistic represent, and how should we interpret the coefficients here?
The wealth effect operates on both nodes in a dyad. The conditional log-odds of a tie between two actors is

−2.59 × change in the number of ties + 0.01 × the wealth of node 1 + 0.01 × the wealth of node 2,

or
−2.59 + 0.01 × the sum of the wealth of the two nodes.

• for a tie between two nodes with minimum wealth, the conditional log-odds is
−2.59 + 0.01 ∗ (3 + 3) = −2.53

• for a tie between two nodes with maximum wealth:
−2.59 + 0.01 ∗ (146 + 146) = 0.33

• for a tie between the node with maximum wealth and the node with minimum wealth:
−2.59 + 0.01 ∗ (146 + 3) = −1.1

• The corresponding probabilities are 0.07, 0.58, and 0.25.
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This model specification does not include a term for homophily by wealth, i.e., a term accounting for similarity
in wealth of the two end nodes of a potential tie. It just specifies a relation between wealth and mean
degree. To specify homophily on wealth, you could use the ergm-term absdiff. See section 3 below for more
information on ergm-terms.

Nodal covariates: Homophily Let’s try a larger network, a simulated mutual friendship network based
on one of the schools from the AddHealth study. Here, we’ll examine the homophily in friendships by grade
and race. Both are discrete attributes so we use the ergm-term nodematch.
data(faux.mesa.high)
mesa <- faux.mesa.high

set.seed(1)
mesa

Network attributes:
vertices = 205
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 203

missing edges= 0
non-missing edges= 203

Vertex attribute names:
Grade Race Sex

No edge attributes
par(mfrow=c(1,1)) # Back to 1-panel plots
plot(mesa, vertex.col='Grade')
legend('bottomleft',fill=7:12,

legend=paste('Grade',7:12),cex=0.75)

Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12

fauxmodel.01 <- ergm(mesa ~edges +
nodefactor('Grade') + nodematch('Grade',diff=T) +
nodefactor('Race') + nodematch('Race',diff=T))
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Observed statistic(s) nodematch.Race.Black and nodematch.Race.Other are at their smallest attainable values. Their coefficients will be fixed at -Inf.

Starting maximum pseudolikelihood estimation (MPLE):

Obtaining the responsible dyads.

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.
summary(fauxmodel.01)

Call:
ergm(formula = mesa ~ edges + nodefactor("Grade") + nodematch("Grade",

diff = T) + nodefactor("Race") + nodematch("Race", diff = T))

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -8.0538 1.2561 0 -6.412 < 1e-04 ***
nodefactor.Grade.8 1.5201 0.6858 0 2.216 0.026663 *
nodefactor.Grade.9 2.5284 0.6493 0 3.894 < 1e-04 ***
nodefactor.Grade.10 2.8652 0.6512 0 4.400 < 1e-04 ***
nodefactor.Grade.11 2.6291 0.6563 0 4.006 < 1e-04 ***
nodefactor.Grade.12 3.4629 0.6566 0 5.274 < 1e-04 ***
nodematch.Grade.7 7.4662 1.1730 0 6.365 < 1e-04 ***
nodematch.Grade.8 4.2882 0.7150 0 5.997 < 1e-04 ***
nodematch.Grade.9 2.0371 0.5538 0 3.678 0.000235 ***
nodematch.Grade.10 1.2489 0.6233 0 2.004 0.045111 *
nodematch.Grade.11 2.4521 0.6124 0 4.004 < 1e-04 ***
nodematch.Grade.12 1.2987 0.6981 0 1.860 0.062824 .
nodefactor.Race.Hisp -1.6659 0.2963 0 -5.622 < 1e-04 ***
nodefactor.Race.NatAm -1.4725 0.2869 0 -5.132 < 1e-04 ***
nodefactor.Race.Other -2.9618 1.0372 0 -2.856 0.004296 **
nodefactor.Race.White -0.8488 0.2958 0 -2.869 0.004112 **
nodematch.Race.Black -Inf 0.0000 0 -Inf < 1e-04 ***
nodematch.Race.Hisp 0.6912 0.3451 0 2.003 0.045153 *
nodematch.Race.NatAm 1.2482 0.3550 0 3.517 0.000437 ***
nodematch.Race.Other -Inf 0.0000 0 -Inf < 1e-04 ***
nodematch.Race.White 0.3140 0.6405 0 0.490 0.623947
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 28958 on 20889 degrees of freedom
Residual Deviance: 1798 on 20868 degrees of freedom

AIC: 1836 BIC: 1987 (Smaller is better. MC Std. Err. = 0)

Warning: The following terms have infinite coefficient estimates:
nodematch.Race.Black nodematch.Race.Other

Two of the coefficients are estimated as -Inf (the nodematch coefficients for race Black and Other). Why is
this?
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table(mesa %v% 'Race') # Frequencies of race

Black Hisp NatAm Other White
6 109 68 4 18

mixingmatrix(mesa, "Race")

Black Hisp NatAm Other White
Black 0 8 13 0 5
Hisp 8 53 41 1 22
NatAm 13 41 46 0 10
Other 0 1 0 0 0
White 5 22 10 0 4

Note: Marginal totals can be misleading for undirected mixing matrices.

We see that there are very few students in the Black and Other race categories, and these few students form
no within-group ties. The empty cells are what produce the -Inf estimates.

We would have caught this earlier if we had looked at the g(y) statistics at the beginning:
summary(mesa ~edges +

nodefactor('Grade') + nodematch('Grade',diff=T) +
nodefactor('Race') + nodematch('Race',diff=T))

edges nodefactor.Grade.8 nodefactor.Grade.9
203 75 65

nodefactor.Grade.10 nodefactor.Grade.11 nodefactor.Grade.12
36 49 28

nodematch.Grade.7 nodematch.Grade.8 nodematch.Grade.9
75 33 23

nodematch.Grade.10 nodematch.Grade.11 nodematch.Grade.12
9 17 6

nodefactor.Race.Hisp nodefactor.Race.NatAm nodefactor.Race.Other
178 156 1

nodefactor.Race.White nodematch.Race.Black nodematch.Race.Hisp
45 0 53

nodematch.Race.NatAm nodematch.Race.Other nodematch.Race.White
46 0 4

Moral: It is often helpful to check the descriptive statistics of a model in the observed network before fitting
the model.

See also the ergm-term nodemix for fitting mixing patterns other than homophily on discrete nodal attributes.

Directed ties Let’s try a model for a directed network and examine the tendency for ties to be reciprocated
(“mutuality”). The ergm-term for the corresponding statistic is mutual. We’ll fit this model to the third
wave of the classic Sampson Monastery data, and we’ll start by taking a look at the network.
set.seed(2)
data(samplk) # directed data: Sampson's Monks
ls()

[1] "DROPS" "ext" "EXTS" "faux.mesa.high"
[5] "fauxmodel.01" "flobusiness" "flomarriage" "flomodel.01"
[9] "flomodel.02" "flomodel.03" "ifn" "mesa"

[13] "samplk1" "samplk2" "samplk3" "wealth"
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samplk3

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 56

missing edges= 0
non-missing edges= 56

Vertex attribute names:
cloisterville group vertex.names

No edge attributes
plot(samplk3)

summary(samplk3~edges+mutual)

edges mutual
56 15

The plot now shows the direction of a tie, and the g(y) statistics for this model in this network are 56 total
ties and 15 mutual dyads. This means 30 of the 56 ties are reciprocated, i.e., they are part of dyads in which
both directional ties are present.
set.seed(3)
sampmodel.01 <- ergm(samplk3~edges+mutual)
summary(sampmodel.01)

Call:
ergm(formula = samplk3 ~ edges + mutual)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.1639 0.2211 0 -9.789 <1e-04 ***
mutual 2.3118 0.4860 0 4.757 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 424.2 on 306 degrees of freedom
Residual Deviance: 268.1 on 304 degrees of freedom
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AIC: 272.1 BIC: 279.6 (Smaller is better. MC Std. Err. = 0.3199)

There is a statistically significant mutuality effect. The coefficients for the edges and mutual terms add to
roughly zero for a mutual tie, so the conditional log-odds of a mutual tie are about zero. Thus, the conditional
probability that a tie exists, given that the tie in the reverse direction exists, is about 50%. (Do you see why
a log-odds of zero corresponds to a probability of 50%?) By contrast, a non-mutual tie has a conditional
log-odds of -2.16, or 10% probability.

Triangle terms in directed networks can have many different configurations. Many of these configurations are
coded as ergm-terms, and we’ll talk about these more below.

2. Missing data
It is important to distinguish between the absence of a tie and the absence of data on whether a tie exists.
The former is an observed zero, whereas the latter is unobserved. We should not code both of these as “0”.
The ergm package recognizes and handles missing data appropriately, as long as we identify the data as
missing. Let’s explore this with a simple example.

Start by estimating an ergm on a 10-node network with three missing ties.
set.seed(4)
missnet <- network.initialize(10,directed=F) # initialize an empty net with 10 nodes
missnet[1,2] <- missnet[2,7] <- missnet[3,6] <- 1 # add a few ties
missnet[4,6] <- missnet[4,9] <- missnet[5,6] <- NA # mark a few dyads missing
summary(missnet)

Network attributes:
vertices = 10
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE

total edges = 6
missing edges = 3
non-missing edges = 3

density = 0.06666667

Vertex attributes:
vertex.names:
character valued attribute
10 valid vertex names

No edge attributes

Network adjacency matrix:
1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 NA 0 0 NA 0
5 0 0 0 0 0 NA 0 0 0 0
6 0 0 1 NA NA 0 0 0 0 0
7 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
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9 0 0 0 NA 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
# plot missnet with missing dyads colored red.
tempnet <- missnet
tempnet[4,6] <- tempnet[4,9] <- tempnet[5,6] <- 1
missnetmat <- as.matrix(missnet)
missnetmat[is.na(missnetmat)] <- 2
plot(tempnet,label = network.vertex.names(tempnet),

edge.col = missnetmat)

1

2

3

4

5

6
7

8

9

10

# fit an ergm to the network with missing data identified
summary(missnet~edges)

edges
3

summary(ergm(missnet~edges))

Starting maximum pseudolikelihood estimation (MPLE):

Obtaining the responsible dyads.

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.

Call:
ergm(formula = missnet ~ edges)

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.5649 0.5991 0 -4.281 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 58.22 on 42 degrees of freedom
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Residual Deviance: 21.61 on 41 degrees of freedom

AIC: 23.61 BIC: 25.35 (Smaller is better. MC Std. Err. = 0)

The coefficient estimate equals -2.56, which corresponds to a probability of 7.14%. Our network has 3 ties,
out of the 42 non-missing nodal pairs (10 choose 2 minus 3), and 3/42 = 7.14%. So our estimate represents
the density of ties in the observed sample.

Now let’s assign those missing ties the (observed) value “0” and check how the value of the coefficient will
change. Can you predict whether it will get bigger or smaller? Can you calculate it directly before checking
the output of an ergm fit?
missnet_bad <- missnet # create network with missing dyads set to 0
missnet_bad[4,6] <- missnet_bad[4,9] <- missnet_bad[5,6] <- 0

# fit an ergm to the network with missing dyads set to 0
summary(missnet_bad)

Network attributes:
vertices = 10
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE

total edges = 3
missing edges = 0
non-missing edges = 3

density = 0.06666667

Vertex attributes:
vertex.names:
character valued attribute
10 valid vertex names

No edge attributes

Network adjacency matrix:
1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
summary(ergm(missnet_bad~edges))

Starting maximum pseudolikelihood estimation (MPLE):

Obtaining the responsible dyads.

Evaluating the predictor and response matrix.
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Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.

Call:
ergm(formula = missnet_bad ~ edges)

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.6391 0.5976 0 -4.416 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 62.38 on 45 degrees of freedom
Residual Deviance: 22.04 on 44 degrees of freedom

AIC: 24.04 BIC: 25.85 (Smaller is better. MC Std. Err. = 0)

The coefficient is smaller now because the missing ties are counted as “0”, and this translates to a conditional
tie probability of 6.67%, or 3/45.

MORAL: If you have missing data on ties, be sure to identify them by assigning the “NA” code. This is
particularly important if you’re reading in data as an edgelist, as all dyads without edges are implicitly set to
“0” in this case.

3. Model terms available for ergm estimation and simulation
Model terms are the expressions (e.g., edges and triangle) used to represent predictors on the right-hand
side of formulas used in:

• calls to summary (to obtain measurements of network statistics on a dataset)
• calls to ergm (to estimate, or fit, an ERGM’s coefficients)
• calls to simulate (to simulate networks from a fitted ERGM)

Because these terms are not exogeneous measures, but functions of the dyad states in the network, they must
be calculated for the network that is being modeled. Many ERGM terms are simple counts of configurations
(e.g., edges, nodal degrees, stars, triangles), but others are more complex functions of these configurations (e.g.,
geometrically weighted degrees and shared partners). In theory, any configuration or function of configurations
can be a term in an ERGM. In practice, however, these terms have to be constructed before they can be
used—that is, one has to explicitly write an algorithm that defines and calculates the network statistic of
interest. This is another key way that ERGMs differ from traditional linear and general linear models.

The terms that can be used in a model also depend on the type of network being analyzed: directed or
undirected, one-mode or two-mode (“bipartite”), binary or valued edges.

Terms provided with ergm

The ergm package provides myriad terms, and it can be difficult to absorb the full array of available model
terms in any one place. This is particularly true with the release of ergm version 4.0, which expands the
user’s ability to create terms even further, for example through the use of term operators. As mentioned
above in Section 1, it is possible to search for specific topics using search.ergmTerms; to obtain help on a
particular term called [name] using ergmTerm?[name], where [name] is the name of the term; or to see the
full list of available terms using ?ergmTerm.

The list of all terms is quite lengthy, so it may be helpful to start with a more concise list such as the one
found here. A more detailed discussion can be found in volume 24, issue 4 of the Journal of Statistical
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Software.

To appreciate the expanded capabilities of the ergm package as of the release of version 4.0, we recommend
Krivitsky et al (2023). In this article, Section 3 describes the enhanced flexibility to create specialized model
terms involving functions of nodal covariates, and Section 4 explains how operators further extend the types
of terms at the user’s disposal.

Coding new ergm-terms

There is a statnet package called ergm.userterms that provides the utilities needed to write new ergm-terms.
The package is available via GitHub at https://github.com/statnet/ergm.userterms, and installing it will
include the tutorial, called ergmuserterms.pdf. A tutorial can also be found in the Journal of Statistical
Software 52(2), and some introductory slides and installation instructions from the workshop we teach on
coding ergm-terms can be found on GitHub.

Writing up new ergm terms requires some knowledge of C and the ability to build R from source.

4. Assessing convergence for dyad dependent models: MCMC Diagnostics
When dyad dependent terms are in the model, the computational algorithms in ergm use Markov chain Monte
Carlo (MCMC) to estimate the parameters. This approach basically works as follows:

• Start with an initial vector of coefficient values; the default is to use the maximum pseudo-likelihood
estimate, or MPLE. (We do not cover MPLE in this tutorial, but this estimator is easy to compute
using a standard logistic regression algorithm.)

• Choose a dyad at random, and flip a coin, weighted by the model, to decide whether there will be a tie.

• Repeat this for 1024 steps, the default control value of MCMC.interval (see ?control.simulate)

• Calculate and store the g(y) statistics for the resulting network.

• Repeat this process until either MCMC.samplesize vectors of statistics have been collected, or until a
certain MCMC.effectiveSize criterion is reached (see ?control.simulate).

• Calculate the sample average of the sampled g(y) statistics, then compare this to the vector of observed
statistics.

• Update the coefficient estimates as needed.

• Repeat until the process converges: The difference between the MCMC sample average and the observed
statistic is sufficiently small.

For these models, it is important to assess model convergence before interpreting the model results, i.e.,
before evaluating statistical significance, interpreting coefficients, or assessing goodness of fit. To do this, we
use the function mcmc.diagnostics, as we now demonstrate.

What it looks like when a model converges properly

We will first consider a simple dyadic dependent model where the algorithm works using the program defaults,
with a degree(1) term that captures whether there are more (or less) degree 1 nodes than we would expect,
given the density.
set.seed(314159)
summary(flobusiness~edges+degree(1))

edges degree1
15 3

fit <- ergm(flobusiness~edges+degree(1))
summary(fit)
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Call:
ergm(formula = flobusiness ~ edges + degree(1))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.1177 0.3032 0 -6.984 <1e-04 ***
degree1 -0.6272 0.6010 0 -1.044 0.297
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.36 on 120 degrees of freedom
Residual Deviance: 89.39 on 118 degrees of freedom

AIC: 93.39 BIC: 98.96 (Smaller is better. MC Std. Err. = 0.03364)
mcmc.diagnostics(fit)

Sample statistics
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Sample statistics summary:

Iterations = 7168:131072
Thinning interval = 512
Number of chains = 1
Sample size per chain = 243

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
edges 0.2140 3.601 0.2310 0.2310
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degree1 -0.1276 1.817 0.1166 0.1166

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
edges -8 -2 1 2 7
degree1 -3 -1 0 1 4

Are sample statistics significantly different from observed?
edges degree1 (Omni)

diff. 0.2139918 -0.1275720 NA
test stat. 0.9262347 -1.0944112 1.4827084
P-val. 0.3543240 0.2737747 0.4790184

Sample statistics cross-correlations:
edges degree1

edges 1.0000000 -0.3929828
degree1 -0.3929828 1.0000000

Sample statistics auto-correlation:
Chain 1

edges degree1
Lag 0 1.000000000 1.00000000
Lag 512 -0.018373256 0.06527360
Lag 1024 -0.008853872 -0.00419178
Lag 1536 -0.006593784 -0.05395258
Lag 2048 0.033260731 0.02580333
Lag 2560 -0.059894956 0.02109630

Sample statistics burn-in diagnostic (Geweke):
Chain 1

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

edges degree1
1.3768812 0.1355053

Individual P-values (lower = worse):
edges degree1

0.1685490 0.8922124
Joint P-value (lower = worse): 0.1257365

Note: MCMC diagnostics shown here are from the last round of
simulation, prior to computation of final parameter estimates.
Because the final estimates are refinements of those used for this
simulation run, these diagnostics may understate model performance.
To directly assess the performance of the final model on in-model
statistics, please use the GOF command: gof(ergmFitObject,
GOF=~model).

What this shows is a summary of the statistics generated by the MCMC process, with each row summarizing
a different statistic and with each statistic measured in terms of its value relative to the corresponding value
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for the original observed network. On the left is a “traceplot” in which the values are plotted as a function of
iteration number; while on the right is a histogram-like plot of the whole sample of statistics without regard
to their order in the MCMC process.

This example exhibits the sort of behavior that we want to see in the MCMC diagnostics: The MCMC
sample statistics are varying randomly around the observed values at each step; we might say that the chain
is “mixing well”. The sampled values show little serial correlation, indicating that they are independent
draws, and they have a roughly bell-shaped distribution, centered at zero. The sawtooth pattern visible in
the degree term deviation plot is due to the combination of discrete values and small range in the statistics:
the observed number of degree 1 nodes is 3, and only a few discrete values are produced by the simulations.
So the sawtooth pattern is is an inherent property of the statistic, not a problem with the model.

There are many control parameters for the MCMC algorithm (help(snctrl)), and we’ll play with some of
these below. To see what the algorithm is doing at each step, we can drop the sampling interval down to 1:
set.seed(271828)
fit <- ergm(flobusiness~edges+degree(1),

control=snctrl(MCMC.interval=1))

This runs an MCMC algorithm where every network’s statistics are returned, which might be useful if we are
trying to debug a bad model fit.

In the last section we’ll look at some models that don’t converge properly, and how to use MCMC diagnostics
to identify and address this.

5. Network simulation: the simulate command and network.list objects
Once we have estimated the coefficients of an ERGM, the model is completely specified. It defines a probability
distribution across all networks on the given set of nodes. If the model is a good fit to the observed data,
then networks drawn from this distribution will be more likely to “resemble” the observed data. Thus, one
way we use simulations from a model is to assess that model’s goodness of fit to our data. Here, we will take
a quick look at how the simulation function works.

The simulate command is easy to run if we have an ERGM that has already been fitted. Let’s use the
flomodel.03 object from earlier:
set.seed(101)
flomodel.03.sim <- simulate(flomodel.03,nsim=10)
class(flomodel.03.sim) # Reveal the class of the object created

[1] "network.list"
summary(flomodel.03.sim) # quick summary of a network.list object

Number of Networks: 10
Model: flomarriage ~ edges + nodecov("wealth")
Reference: ~Bernoulli
Constraints: ~. ~. - observed
Stored network statistics:

edges nodecov.wealth
[1,] 17 1539
[2,] 18 1742
[3,] 21 2471
[4,] 16 1304
[5,] 18 1779
[6,] 26 3143
[7,] 22 2239
[8,] 26 2905
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[9,] 24 2792
[10,] 15 1682
attr(,"monitored")
[1] FALSE FALSE

Number of Networks: 10
Model: flomarriage ~ edges + nodecov("wealth")
Reference: ~Bernoulli
Constraints: ~. ~. - observed
attributes(flomodel.03.sim) # Reveal the various attributes of this network.list

$coefficients
edges nodecov.wealth

-2.59492903 0.01054591

$control
Control parameter list generated by 'control.simulate.formula' or equivalent. Non-empty parameters:
MCMC.burnin: 16384
MCMC.interval: 1024
MCMC.scale: 1
MCMC.prop: ~sparse
MCMC.prop.weights: "default"
MCMC.batch: 0
MCMC.effectiveSize.damp: 10
MCMC.effectiveSize.maxruns: 1000
MCMC.effectiveSize.burnin.pval: 0.2
MCMC.effectiveSize.burnin.min: 0.05
MCMC.effectiveSize.burnin.max: 0.5
MCMC.effectiveSize.burnin.nmin: 16
MCMC.effectiveSize.burnin.nmax: 128
MCMC.effectiveSize.burnin.PC: FALSE
MCMC.effectiveSize.burnin.scl: 1024
MCMC.maxedges: Inf
MCMC.runtime.traceplot: FALSE
network.output: "network"
parallel: 0
parallel.version.check: TRUE
parallel.inherit.MT: FALSE
MCMC.samplesize: 10
obs.MCMC.mul: 0.25
obs.MCMC.samplesize.mul: 0.5
obs.MCMC.interval.mul: 0.5
obs.MCMC.burnin.mul: 0.5
obs.MCMC.prop: ~sparse
obs.MCMC.prop.weights: "default"
MCMC.save_networks: TRUE

$response
[1] NA

$class
[1] "network.list"

$stats
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edges nodecov.wealth
[1,] 17 1539
[2,] 18 1742
[3,] 21 2471
[4,] 16 1304
[5,] 18 1779
[6,] 26 3143
[7,] 22 2239
[8,] 26 2905
[9,] 24 2792

[10,] 15 1682
attr(,"monitored")
[1] FALSE FALSE

$formula
flomarriage ~ edges + nodecov("wealth")
attr(,".Basis")
Network attributes:
vertices = 16
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 20

missing edges= 0
non-missing edges= 20

Vertex attribute names:
priorates totalties vertex.names wealth

No edge attributes

$constraints
$constraints[[1]]
~.
<environment: 0x5625e09d0b30>

$constraints[[2]]
~. - observed
<environment: 0x5625e09f7340>

$reference
~Bernoulli
<environment: 0x5625e0998998>

We can check whether it appears that the simulated sample mean statistics are in fact close to the observed
statistics:
rbind("obs"=summary(flomarriage~edges+nodecov("wealth")),

"sim mean"=colMeans(attr(flomodel.03.sim, "stats")))

edges nodecov.wealth
obs 20.0 2168.0
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sim mean 20.3 2159.6

By default, our network.list object contains all ten of the networks we simulated. If it were important to
save memory, we could have asked that only the network statistics be stored by passing the output="stats"
option to the earlier simulate command; see ?simulate.ergm for more details. Let’s take a look at the
seventh network in our list of ten:
# we can also plot individual simulations
flomodel.03.sim[[7]]

Network attributes:
vertices = 16
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 22

missing edges= 0
non-missing edges= 22

Vertex attribute names:
priorates totalties vertex.names wealth

No edge attributes
plot(flomodel.03.sim[[7]],

label= flomodel.03.sim[[7]] %v% "vertex.names",
vertex.cex = (flomodel.03.sim[[7]] %v% "wealth")/25)
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Strozzi

Tornabuoni

Voil‘a. Your plot may look different since randomness is involved in both the simulation and in the plotting
of a network.

Simulation from a model is a very powerful tool for examining the range of variation that can be expected
from this model, both in the sufficient statistics that define the model and in other statistics not explicitly
specified by the model. Simulation plays a large role in analyzing egocentrically sampled data, and if you
take the tergm workshop, you will see how we can use simulation to examine the temporal implications of a
model based on a single cross-sectional egocentrically sampled dataset.

Next, we will examine a primary use of simulation in the ergm package: we simulate networks from a fitted
model to evaluate goodness of fit to the observed network.
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6. Examining the quality of model fit — GOF
ERGMs can be seen as generative models when they represent the process that governs the global patterns of
tie prevalence from a local perspective, i.e., the perspective of the nodes involved in the particular micro-
configurations represented by the ergm-terms in the model. The locally generated processes in turn aggregate
to produce characteristic global network properties, even those global properties that are not explicit terms
in the model.

One test of whether an ERGM fits the data is therefore how well it reproduces observed global network
properties that are not in the model. We do this by using the gof function to choose network statistics that
are not in the model, then compare the values of these statistics observed in the original network to the
distribution of values we get in simulated networks from our model.

The gof function is a bit different than the summary, ergm, and simulate functions, in that it currently
(for undirected networks) only takes three ergm-terms as arguments: degree, espartners (edgewise shared
partners), and distance (geodesic distances). Each of these terms captures an aggregate network distribution
at either the node level (degree), the edge level (espartners), or the dyad level (distance).
set.seed(54321) # The gof function uses random values
flomodel.03.gof <- gof(flomodel.03)
flomodel.03.gof

Goodness-of-fit for degree

obs min mean max MC p-value
degree0 1 0 1.20 5 1.00
degree1 4 0 3.64 8 1.00
degree2 2 0 3.98 9 0.44
degree3 6 0 3.43 7 0.20
degree4 2 0 1.86 7 1.00
degree5 0 0 1.03 5 0.68
degree6 1 0 0.48 4 0.70
degree7 0 0 0.24 2 1.00
degree8 0 0 0.11 1 1.00
degree9 0 0 0.02 1 1.00
degree10 0 0 0.01 1 1.00

Goodness-of-fit for edgewise shared partner

obs min mean max MC p-value
esp0 12 5 12.65 19 0.86
esp1 7 0 5.49 15 0.72
esp2 1 0 1.71 8 1.00
esp3 0 0 0.22 5 1.00
esp4 0 0 0.03 2 1.00

Goodness-of-fit for minimum geodesic distance

obs min mean max MC p-value
1 20 13 20.10 37 1.00
2 35 17 35.34 67 1.00
3 32 11 27.79 41 0.58
4 15 2 12.20 26 0.76
5 3 0 3.68 13 0.94
6 0 0 0.88 11 1.00
7 0 0 0.19 8 1.00
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8 0 0 0.03 2 1.00
Inf 15 0 19.79 65 1.00

Goodness-of-fit for model statistics

obs min mean max MC p-value
edges 20 13 20.10 37 1.0
nodecov.wealth 2168 1287 2201.89 3467 0.9
plot(flomodel.03.gof)
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Goodness−of−fit diagnostics

Let’s see how the gof function operates on a larger network by fitting the simplistic edges-only model to the
faux.mesa.high dataset used earlier:
set.seed(12345)
mesamodel.02 <- ergm(mesa~edges)

Starting maximum pseudolikelihood estimation (MPLE):
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Obtaining the responsible dyads.

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Evaluating log-likelihood at the estimate.
mesamodel.02.gof <- gof(mesamodel.02~degree + esp + distance,

control = snctrl(nsim=10))

Warning in gof.formula(object = object$formula, coef = coef, GOF = GOF, : No
parameter values given, using 0.
plot(mesamodel.02.gof)
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Unsurprisingly, networks simulated from the simplistic model do not appear to capture the global structure
present in the AddHealth-based faux.mesa.high network.

For a good example of model exploration and fitting for the Add Health Friendship networks, see Goodreau,
Kitts & Morris, Demography 2009. For more technical details on the approach, see Hunter, Goodreau and
Handcock JASA 2008

7. Diagnostics: troubleshooting and checking for model degeneracy
When a model is not a good representation of the observed network, the simulated networks produced in the
MCMC chains may be far enough away from the observed network that the estimation process is affected. In
the worst case scenario, the simulated networks will be so different that the algorithm fails altogether. When
this happens, it basically means the model specified would not have produced the network observed. Some
classes of models, we now know, can almost never produce an interesting network, such as we might observe.
This behavior is what we call “model degeneracy.”

For more detailed discussion of model degeneracy in the ERGM context, see the papers listed in the reference
section.

In that worst case scenario, we end up not being able to obtain coefficent estimates, so we can’t use the GOF
function to identify how the model simulations deviate from the observed data. We can, however, still use
the MCMC diagnostics to observe what is happening with the simulation algorithm, and this (plus some
experience and intuition about the behavior of ergm-terms) can help us improve the model specification.

What it looks like when a model fails

For this purpose, we’ll use a larger network, faux.magnolia.high, and look at a simple model for triad
closure that includes only edges and triangle terms.
set.seed(10)
data('faux.magnolia.high')
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magnolia <- faux.magnolia.high
magnolia

Network attributes:
vertices = 1461
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 974

missing edges= 0
non-missing edges= 974

Vertex attribute names:
Grade Race Sex vertex.names

Edge attribute names not shown
plot(magnolia, vertex.cex=.5)

summary(magnolia~edges+triangle) # Simple model for triad closure

edges triangle
974 169

We now try to fit this “simple” model:
set.seed(100)
fit <- ergm(magnolia~edges+triangle,

control=snctrl(MCMLE.effectiveSize=NULL))

Starting maximum pseudolikelihood estimation (MPLE):
Evaluating the predictor and response matrix.
Maximizing the pseudolikelihood.
Finished MPLE.
Starting Monte Carlo maximum likelihood estimation (MCMLE):
...
Iteration 4 of at most 60:
Optimizing with step length 0.3963.
The log-likelihood improved by 1.1568.
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Estimating equations are not within tolerance region.
Iteration 5 of at most 60:
Error in ergm.MCMLE(init, nw, model, initialfit = (initialfit <- NULL), :

Number of edges in a simulated network exceeds that in the observed by a factor of more than 20. This is a strong indicator of model degeneracy or a very poor starting parameter configuration. If you are reasonably certain that neither of these is the case, increase the MCMLE.density.guard control.ergm() parameter.

Very interesting. Instead of converging, the algorithm heads off into networks that are much much more
dense than the observed network. This is such a clear indicator of a degenerate model specification that the
algorithm stops after 3 iterations, to avoid storage problems. To peek a bit more under the hood, we can
stop the algorithm earlier, by setting MCMLE.maxit=2, to catch where it’s heading:
set.seed(1000)
fit <- ergm(magnolia~edges+triangle,

control=snctrl(MCMLE.maxit=2,MCMLE.effectiveSize=NULL))

Starting maximum pseudolikelihood estimation (MPLE):
Evaluating the predictor and response matrix.
Maximizing the pseudolikelihood.
Finished MPLE.
Starting Monte Carlo maximum likelihood estimation (MCMLE):
Iteration 1 of at most 2:
Optimizing with step length 0.2805.
The log-likelihood improved by 3.0798.
Estimating equations are not within tolerance region.
Iteration 2 of at most 2:
Optimizing with step length 0.0420.
The log-likelihood improved by 4.6627.
Estimating equations are not within tolerance region.
MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details.
Finished MCMLE.
Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel...
Bridging between the dyad-independent submodel and the full model...
Setting up bridge sampling...
Using 16 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .
Bridging finished.
This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

Let’s use the MCMC diagnostics from Section 4 to get a sense of what happened:
mcmc.diagnostics(fit)
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For the diagnostic plots, the simulated network statistics are subtracted from their observed values so that
the observed values equal zero. Clearly, this Markov chain is heading somewhere very bad!

The edges + triangle model class turns out to be one of the classic degenerate model specifications, and
we now understand much more about why it does not produce reasonable levels of triadic closure.

We also now have a more robust way of modeling triangles: the geometrically-weighed edgewise shared
partner term (GWESP). For a technical introduction to GWESP, see Hunter and Handcock, 2006; for a more
intuitive description and empirical application, see Goodreau, Kitts & Morris, 2009 )

Let’s see what using gwesp instead of triangle can do. We can also control the number of Metropolis-
Hastings (MCMC) proposals between sampled statistics in our Markov chain, one of the many control
parameters that may be passed to functions in the ergm package using the control=snctrl() syntax. (To
see the many control parameters that may be set by the user in the ergm package, type ?snctrl.)
set.seed(10101)
fit <- ergm(magnolia~edges+gwesp(0.25, fixed=T),

control=snctrl(MCMC.interval = 10000),
verbose=T)

Evaluating network in model.
Initializing unconstrained Metropolis-Hastings proposal: ‘ergm:MH_TNT’.
Initializing model...
Model initialized.
Using initial method 'MPLE'.
Fitting initial model.
Starting maximum pseudolikelihood estimation (MPLE):
Evaluating the predictor and response matrix.
Maximizing the pseudolikelihood.
Finished MPLE.
Starting Monte Carlo maximum likelihood estimation (MCMLE):
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... (output snipped)

Bridging finished.
This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.
mcmc.diagnostics(fit)

Sample statistics
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Sample statistics summary:

Iterations = 2800000:55400000
Thinning interval = 40000
Number of chains = 1
Sample size per chain = 1316

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
edges 7.866 39.98 1.1020 4.141
gwesp.fixed.0.25 7.206 31.99 0.8819 3.360

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
edges -66.12 -18.25 6.000 34.00 93.12
gwesp.fixed.0.25 -57.14 -13.50 8.166 27.07 71.32

Are sample statistics significantly different from observed?
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edges gwesp.fixed.0.25 (Omni)
diff. 7.86626140 7.20579674 NA
test stat. 1.89941461 2.14437967 6.19661638
P-val. 0.05750998 0.03200248 0.04675916

Sample statistics cross-correlations:
edges gwesp.fixed.0.25

edges 1.0000000 0.7833691
gwesp.fixed.0.25 0.7833691 1.0000000

Sample statistics auto-correlation:
Chain 1

edges gwesp.fixed.0.25
Lag 0 1.0000000 1.0000000
Lag 40000 0.5460541 0.8587880
Lag 80000 0.4618254 0.7501801
Lag 120000 0.4129546 0.6642087
Lag 160000 0.3832516 0.5940199
Lag 2e+05 0.3082655 0.5300815

Sample statistics burn-in diagnostic (Geweke):
Chain 1

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

edges gwesp.fixed.0.25
0.1445195 -0.1056854

Individual P-values (lower = worse):
edges gwesp.fixed.0.25

0.8850903 0.9158320
Joint P-value (lower = worse): 0.3733633

Note: MCMC diagnostics shown here are from the last round of
simulation, prior to computation of final parameter estimates.
Because the final estimates are refinements of those used for this
simulation run, these diagnostics may understate model performance.
To directly assess the performance of the final model on in-model
statistics, please use the GOF command: gof(ergmFitObject,
GOF=~model).

MORAL: Unwanted degeneracy is an indicator of a poorly specified model. It is not a property of all ERGMs
(nor is it unique to ERGMs!), but it is associated with some dyadic-dependent terms, in particular, the
reduced homogeneous Markov specifications (e.g., 2-stars and triangle terms). For a good technical discussion
of unstable terms, see Schweinberger 2012. For a discussion of alternative terms that exhibit more stable
behavior, see Snijders et al. 2006.. For the gwesp term and the curved exponential family terms in general,
see Hunter and Handcock 2006.. Note that there are cases in which degenerate behavior may be realistic and
desired (e.g., in modeling small groups that do genuinely collapse into cliques or other regular structures, or
in some physical applications), but these are not frequently encountered in modeling medium-to-large social
networks. If your system is not degenerate but your model is, this suggests that you may need to rethink the
theoretical motivation behind your choice of model terms.
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8. Working with egocentrically sampled network data
One of the most powerful features of ERGMs is that they can be used to estimate models from egocentrically
sampled data, and the fitted models can then be used to simulate complete networks (of any size) that will
have the properties of the original network that are observed and represented in the model.

In many empirical contexts, it is not feasible to collect a network census or even an adaptive (link-traced)
sample. Even when one of these may be possible in practice, egocentrically sampled data are typically cheaper
and easier to collect.

Long regarded as the poor country cousin in the network data family, egocentric data contain a remarkable
amount of information. With the right statistical methods, such data can be used to explore the properties
of the complete networks in which they are embedded. The basic idea here is to combine what is observed
with assumptions to define a class of models that describes the distribution of networks that are centered on
the observed properties. The variation in these networks quantifies some of the uncertainty introduced by the
assumptions.

The egocentric estimation/simulation framework extends to temporal ERGMs (“TERGMs”) as well, with
the minimal addition of an estimate of partnership duration. This makes it possible to simulate complete
dynamic networks from a single cross-sectional egocentrically sampled network. For an example of what one
can accomplish with this framework, check out the network movie we developed to explore the impact of
dynamic network structure on HIV transmission at http://statnet.org/movies. Similar methods can be used
to simulate continuous time dynamics (see references below, and the ergmgp package).

While the ergm package has had this capability for many years, and old versions of this workshop had a
detailed section on it, there is now a specific package that makes this much easier: ergm.ego. The new
package includes accurate statistical inference, i.e., standard errors for model coefficient estimates, along with
many utilities that simplify the task of reading in the data, conducting exploratory analyses, calculating the
sample target statistics, and specifying model options.

We now have a separate workshop/tutorial for ergm.ego, so we no longer cover this material in the current
ERGM workshop. As always, this workshop material can be found online at the Statnet Workshops wiki.

9. Additional functionality in statnet and other packages
“Statnet” refers to a suite of R packages that are designed to work together, providing tools for a wide range
of different types of network data analysis.
There is also an R package called statnet, whose sole function is to make it easy to install and load all of
the packages produced by the Statnet Project team in a single step.

Examples of Statnet Suite functionality beyond the ergm package include temporal network models and
dynamic network vizualizations, analysis of egocentrically sampled network data, multilevel network modeling,
latent cluster models, and network diffusion and epidemic models. Development is ongoing, with new packages
and new functionality added to existing packages on a regular basis.

Most of the Statnet packages can be downloaded from CRAN, and all are available via GitHub. For more
detailed information, please visit the statnet webpage at www.statnet.org.

Current statnet packages

Packages developed by the Statnet team that are not covered in this tutorial:

• sna — classical social network analysis utilities
• tsna — descriptive statistics for temporal network data
• tergm — temporal ergms for dynamic networks
• ergm.ego— estimation/simulation of ergms from egocentrically sampled data
• ergm.count — models for tie count network data
• ergm.rank — models for tie rank network data
• ergmgp — continuous time network dynamics with ERGM equilibria
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• relevent — relational event models for networks
• latentnet — latent space and latent cluster analysis
• degreenet — MLE estimation for degree distributions (negative binomial, Poisson, scale-free, etc.)
• networksis — simulation of bipartite networks with given degree distributions
• ndtv package — network movie maker
• EpiModel — network modeling of infectious disease and social diffusion processes
• ergm.multi — ERGMs for multiple or multilayer networks
• ergm.userterms — template for users who want to implement their own new ERGM terms. (available

on GitHub only)

Many of these packages have associated training workshops. Our tutorials can be found online, on the GitHub
statnet Workshops wiki.

Additional functionality in base ergm

The ergm package has considerable functionality beyond what has been discussed here. This includes support
for:

• ERGMs for valued ties
• Constraints, and multi-network estimation
• Offsets and size correction
• Fine-tuning of simulation and estimation
• Changescore calculation and other utilities

Some of these topics are covered in our advanced ergm workshops.

Extensions by other developers

There are now a number of excellent packages developed by others that extend the functionality of statnet.
The easiest way to find these is to look at the “reverse depends” of the ergm package on CRAN. Examples
include:

• Bergm — Bayesian Exponential Random Graph Models
• btergm — Temporal Exponential Random Graph Models by Bootstrapped Pseudolikelihood
• hergm — hierarchical ERGMs for multi-level network data
• xergm — extensions to ERGM modeling

Statnet Commons: The development group

Mark S. Handcock <handcock@stat.ucla.edu>

David R. Hunter <dhunter@stat.psu.edu>

Carter T. Butts <buttsc@uci.edu>

Steven M. Goodreau <goodreau@u.washington.edu>

Skye Bender-deMoll <skyebend@skyeome.net>

Martina Morris <morrism@u.washington.edu>

Pavel N. Krivitsky <p.krivitsky@unsw.edu.au>

Samuel M. Jenness <samuel.m.jenness@emory.edu>

Chad Klumb <cklumb@gmail.com>

Michał Bojanowski <mbojanowski@kozminski.edu.pl>
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Appendix A: Clarifying the terms “ergm” and “network”
You will see the terms ergm and network used in multiple contexts throughout the documentation. This is
common in R, but often confusing to newcomers. To clarify:

ergm

• ERGM: the acronym for an Exponential Random Graph Model; a statistical model for relational data
that takes a generalized exponential family form.

• ergm package: one of the packages within the statnet suite
• ergm function: a function within the ergm package; fits an ERGM to a network object, creating an

ergm object in the process.
• ergm object: a class of objects produced by a call to the ergm function, representing the results of an

ERGM fit to a network.

network

• network: a set of actors and the relations among them. Used interchangeably with the term graph.
• network package: one of the packages within the statnet suite; used to create, store, modify and

plot the information found in network objects.
• network object: a class of object in R used to represent a network.

References
For a general orientation to the statnet packages, the best place to start is the special volume of the Journal
of Statistical Software (JSS) devoted to statnet: https://www.jstatsoft.org/issue/view/v024. The nine
papers in this volume cover a wide range of theoretical and practical topics related to ERGMs, and their
implementation in statnet.

However, this volume was written in 2008. The statnet code base has evolved considerably since that time,
and with the release of ergm version 4.0, the most current paper describing the capabilities of the ergm
package is the following preprint:

Krivitsky, P. N., Hunter, D. R., Morris, M., & Klumb, C. (2023). ergm 4: New Features for Analyzing
Exponential-Family Random Graph Models. Journal of Statistical Software, 105(6), 1–44. https://doi.org/10
.18637/jss.v105.i06

For social scientists, a good introductory application paper is:

Goodreau, S., J. Kitts and M. Morris (2009). Birds of a Feather, or Friend of a Friend? Using Statistical
Network Analysis to Investigate Adolescent Social Networks. Demography 46(1): 103-125. link

The literature on ERGMs is large and growing. The following are examples of papers that may be particularly
useful starting points for those interested in exploring additional ERGM functionality implemented in statnet
ERGM functionality per se, but should not be taken as an exhaustive list.

Dealing with Model Degeneracy

Handcock M.S. (2003a). Assessing Degeneracy in Statistical Models of Social Networks. Working Paper 39,
Center for Statistics and the Social Sciences, University of Washington. link

Schweinberger, M. (2011).
Instability, Sensitivity, and Degeneracy of Discrete Exponential Families. JASA 106(496): 1361-1370. link

Snijders, T.A.B. et al. (2006). New Specifications For Exponential Random Graph Models
Sociological Methodology 36(1): 99-153 link

Hunter, D. R. (2007). Curved Exponential Family Models for Social Networks. Social Networks, 29(2),
216-230.link

Valued ERGMs

39

https://www.jstatsoft.org/issue/view/v024
https://doi.org/10.18637/jss.v105.i06
https://doi.org/10.18637/jss.v105.i06
http://link.springer.com/article/10.1353/dem.0.0045
http://www.csss.washington.edu/research/working-papers/39
http://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10747#.U7M4A_ldWSo
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9531.2006.00176.x/abstract
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2031865/


Krivitsky, P.N. (2012).
Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics 6: 1100-1128;
10.1214/12-EJS696

Krivitsky, P.N., Butts, C.T. (2017). Exponential-Family Random Graph Models for Rank-Order Relational
Data. Sociological Methodology, 47: 68-112.

Temporal ERGMs and Network Dynamics

Krivitsky, P.N., Handcock, M.S. (2014). A Separable Model for Dynamic Networks. JRSS Series B-Statistical
Methodology, 76(1):29-46; 10.1111/rssb.12014 JAN 2014 link

Krivitsky, P. N., Handcock, M.S., and Morris, M. (2011). Adjusting for Network Size and Composition Effects
in Exponential-family Random Graph Models, Statistical Methodology 8(4): 319-339, ISSN 1572-3127 link

Butts, C.T. (2023). Continuous Time Graph Processes with Known ERGM Equilibria: Contextual Review,
Extensions, and Synthesis. Journal of Mathematical Sociology; 10.1080/0022250X.2023.2180001 link

Egocentric ERGMs

Krivitsky, P. N., and Morris, M. (2017). Inference for Social Network Models from Egocentrically Sampled
Data, with Application to Understanding Persistent Racial Disparities in HIV Prevalence in the US. Annals
of Applied Statistics, 11(1), 427-455.link

40

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891677/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117581/
https://arxiv.org/abs/2203.06948
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737754/

	The statnet Project
	Introduction to this workshop/tutorial.
	1. Statistical network modeling with ERGMs
	2. Missing data
	3. Model terms available for ergm estimation and simulation
	4. Assessing convergence for dyad dependent models: MCMC Diagnostics
	5. Network simulation: the simulate command and network.list objects
	6. Examining the quality of model fit — GOF
	7. Diagnostics: troubleshooting and checking for model degeneracy
	8. Working with egocentrically sampled network data
	9. Additional functionality in statnet and other packages
	Appendix A: Clarifying the terms ``ergm'' and ``network''
	References

