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The statnet Project

All statnet packages are open-source, written for the R computing environment, and published on CRAN.
The source repositories are hosted on GitHub. Our website is statnet.org

• Need help? For general questions and comments, please email the statnet users group at statnet_
help@uw.edu. You’ll need to join the listserv if you’re not already a member. You can do that here:
statnet_help listserve.

• Found a bug in our software? Please let us know by filing an issue in the appropriate package GitHub
repository, with a reproducible example.
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• Want to request new functionality? We welcome suggestions – you can make a request by filing an issue
on the appropriate package GitHub repository. The chances that this functionality will be developed
are substantially improved if the requests are accompanied by some proposed code (we are happy to
review pull requests).

• For all other issues, please email us at contact@statnet.org.

Introduction to this workshop/tutorial.

This workshop and tutorial cover advanced topics in modeling network data with Exponential family Random
Graph Models (ERGMs) using statnet software. It assumes a familiarity with the ergm package at least at
the level of the introductory workshop entitled ERGMs using statnet. This online tutorial is also designed for
self-study, with example code and self-contained data.

Some of the material in this workshop is drawn from a pair of recent articles by Krivitsky et al.: ergm 4:
New features and ergm 4: Computational Improvements.

Prerequisites

This workshop assumes basic familiarity with R, experience with network concepts and data, familiarity with
the ERGM modeling framework, and proficiency using the ergm package.

Software installation

Minimally, you will need to install the latest version of R (available here) and the statnet packages
ergm.multi, ergm, and network to run the code presented here.
The workshops are conducted using the free version of Rstudio (available here).

The full set of installation intructions with details can be found on the statnet workshop wiki.

If you have not already downloaded the statnet packages for this workshop, the quickest way to install these
(and the other most commonly used packages from the statnet suite), is to open an R session and type:

install.packages('ergm.multi')
update.packages(ask=FALSE, checkBuilt=TRUE)

The first line above will install all three required packages, since both ergm.multi depends on both ergm
and network. The second line ensures that any already-installed packages, including ergm and network, are
updated to their latest versions.

Now load all three packages:

library(ergm.multi)

Loading required package: ergm

Loading required package: network
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’network’ 1.18.1 (2023-01-24), part of the Statnet Project
* ’news(package="network")’ for changes since last version
* ’citation("network")’ for citation information
* ’https://statnet.org’ for help, support, and other information

’ergm’ 4.5.0 (2023-05-27), part of the Statnet Project
* ’news(package="ergm")’ for changes since last version
* ’citation("ergm")’ for citation information
* ’https://statnet.org’ for help, support, and other information

’ergm’ 4 is a major update that introduces some backwards-incompatible
changes. Please type ’news(package="ergm")’ for a list of major
changes.

’ergm.multi’ 0.2.0 (2023-05-29), part of the Statnet Project
* ’news(package="ergm.multi")’ for changes since last version
* ’citation("ergm.multi")’ for citation information
* ’https://statnet.org’ for help, support, and other information

Attaching package: ’ergm.multi’

The following object is masked from ’package:ergm’:

snctrl

You can check the version number with:

packageVersion("ergm")

[1] ’4.5.0’

Throughout, we will set a random seed via set.seed() for commands in tutorial that require simulating
random values. This is not necessary, but it ensures that you will get the same results as the online tutorial.

1. Brief review of ERGM modeling framework

The general form of an ERGM can be written as

P (Y = y) = exp(θ⊤g(y))
k(θ) ,

where

• Y is the random variable for the state of the network (with realization y),

• g(y) is a p-dimensional vector of model statistics for network y,

• θ is the p-dimensional vector of coefficients for those statistics, and
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• k(θ) represents the quantity in the numerator summed over all possible networks (typically constrained
to be all networks with the same node set as y).

In particular, the model implies that the probability attached to a network y only depends on the network
via the vector of statistics g(y). Among other things, this means that maximum likelihood estimation may be
carried out even if we don’t observe the network itself, as long as we know the observed value of g(y). We
will see an example of this procedure in Section 2 of this tutorial.

The model statistics g(y): ERGM terms

The statistics g(y) can be thought of as the “covariates” in the model. In the network modeling context,
these represent network features like density, homophily, triads, etc. In one sense, they are like covariates you
might use in other statistical models. But they are different in one important respect: these g(y) statistics
are functions of the network itself—each is defined by the frequency of a specific configuration of dyads
observed in the network—so they are not measured by a question you include in a survey (e.g., the income of
a node), but instead need to be computed on the specific network you have, after you have collected the data.

As a result, every term in an ERGM must have an associated algorithm for computing its value for your
network. The ergm package in statnet includes about 150 term-computing algorithms. You can get an
up-to-date list of all available terms, and the syntax for using them, by typing ?ergmTerm. When using
RStudio, it is possible to press the tab key after starting a line with ?ergm to view the wide range of possible
help options beginning with the letters ergm.

To obtain help for a specific term, use either help("[name]-ergmTerm") or the shorthand version
ergmTerm?[name], where [name] is the name of the term.

One key categorization of model terms is worth keeping in mind: terms are either dyad independent or dyad
dependent. Dyad independent terms (like nodal homophily terms) imply no dependence between dyads—the
presence or absence of a tie may depend on nodal attributes, but not on the state of other ties. Dyad
dependent terms (like degree terms, or triad terms), by contrast, imply dependence between dyads. Dyad
dependent terms have very different effects, and much of what is different about network models comes
from these terms. They introduce complex cascading effects that can often lead to counter-intuitive and
highly non-linear outcomes. In addition, a model with at least one dyad dependent term requires a different
estimation algorithm, so when we use these terms below you will see some different components in the output.

ERGM probabilities at the tie level

The ERGM expression for the probability of the entire graph shown above can be re-expressed in terms of
the conditional log-odds (that is, the logit of the conditional probability) of a single tie between two actors:

logit P (Yij = 1|yc
ij) = θ⊤δij(y),

where

• Yij is the random variable for the state of the actor pair i, j (with realization yij), and

• yc
ij signifies the complement of yij , i.e. the entire network y except for yij .

• δij(y) is a vector of the “change statistics” for each model term. The change statistic records how the
g(y) term changes if the yij tie is toggled from off to on while fixing the rest of the network. So

δij(y) = g(y+
ij) − g(y−

ij),

where

• y+
ij is defined as yc

ij along with yij set to 1, and
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• y−
ij is defined as yc

ij along with yij set to 0.

So δij(y) equals the value of g(y) when yij = 1 minus the value of g(y) when yij = 0, but all other dyads
are as in y. When this vector of change statistics is multiplied by the vector of coefficients θ, the equation
above shows that this dot product is the log-odds of the tie between i and j, conditional on all other dyads
remaining the same.

In other words, for an individual statistic, its change value for Yij times its corresponding coefficient can be
interpreted as that term’s contribution to the log-odds of that tie, conditional on all other dyads remaining
the same.

2. Sample space constraints

Many applications take the sample space Y to be the power set 2Y of (possibly a subset of) all potential
relationships. Yet it is sometimes desirable to restrict the sample space by placing constraints on which
relationships (i, j) are allowed in Y and further which networks y ∈ 2Y are allowed in Y.

For example, a bipartite network allows only edges connecting nodes from one subset, or mode, to nodes from
its complement. Alternatively, we may wish to allow edges only within subsets of the node set, a situation
often called a block-diagonal constraint. As still another, some applications impose a cap on the degree of any
node, which constrains the sample space to include only those networks in which every node has a permitted
degree.

Correct statistical inference for ERGMs depends on correctly incorporating constraints into the fitting process.
They are specified using the constraints argument, a one-sided formula whose terms specify the constraints
on the sample space.

For example, suppose we wish to constrain the sample space to only those networks with a particular edge
density. To accomplish this, constraints = ~ edges specifies Yedges(y) = {y′ ∈ Y : |y′| = |y|}, where y
is the observed network specified on the left-hand side. Here is a simple example in which we generate a
random network according to a fitted ERGM and conditional on fixing the number of edges:

data("faux.mesa.high")
fmh.fit <- ergm(faux.mesa.high ~ edges + nodematch("Grade"))
newnw <- simulate(fmh.fit, constraints = ~edges, nsim = 10)
rbind(faux.mesa.high = summary(faux.mesa.high ~ edges),

newnw = summary(newnw ~ edges))

edges
faux.mesa.high 203

203
203
203
203
203
203
203
203
203
203

The number of edges in the randomly-simulated newnw above will always be the same as in faux.mesa.high
due to the constraint.
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A full list of currently implemented constraints is obtained via ?ergmConstraint, and a specific constraint
called [name] can be looked up with help("[name]-ergmConstraint") or ergmConstraint?[name]. The
handling of various constraints by MCMC proposals in the ergm package is addressed in Krivitsky et al
(2022b).

Dyad-independent constraints via the Dyads operator

Dyad-independent constraints, which affect Y only through Y and do not induce stochastic dependencies
among the dyad states, may be combined arbitrarily because they do not require special Metropolis–Hastings
proposal algorithms for efficient sampling.

In the remainder of this section, we illustrate some of ergm’s constraints using a dataset due to Coleman
(1964). These data are self-reported friendship ties among 73 boys measured at two time points during the
1957–1958 academic year. They are included as a 2 × 73 × 73 array and documented in the sna package.

Here, we use the Coleman data to create a network object with 2 × 73 nodes:

library("sna")
data("coleman")
cole <- matrix(0, 2 * 73, 2 * 73)
# Upper left block:
cole[1 : 73, 1 : 73] <- coleman[1, , ]
# Lower right block:
cole[73 + (1 : 73), 73 + (1 : 73) ] <- coleman[2, , ]
coleNW <- network(cole)
coleNW %v% "Semester" <- rep(c("Fall", "Spring"), each = 73)
coleNW

Network attributes:
vertices = 146
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 506

missing edges= 0
non-missing edges= 506

Vertex attribute names:
Semester vertex.names

No edge attributes

By construction, the coleNW network includes the Fall 1957 semester data and the Spring 1958 data as the
upper left 73 × 73 and lower right 73 × 73 blocks, respectively. To see this structure, we create a simple
function to plot an binary adjacency matrix so that the zeros and ones are different colors:

BinaryMatrixPlot <- function(x) {
n <- dim(x)[1]
plot(0:n, 0:n, type="n", xaxt="n", yaxt="n", xlab="", ylab="", bty="n", ylim=c(n,0))
therows <- row(x)[x>0]
thecols <- col(x)[x>0]
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rect(thecols-1, therows-1, thecols, therows)
rect(0,0,n,n)

}

Now we can visualize the constrained structure of the coleNW network, where the upper left corner depicts the
relationships measured in the fall and the lower right corner depicts the spring relationships. Relationships
are impossible in the upper right and lower left, a fact we must take into account when calculating statistical
estimates.

BinaryMatrixPlot(as.matrix(coleNW))

The Dyads(fix=NULL, vary=NULL) operator takes one or two ergm formulas that may contain only dyad-
independent terms. For the terms in the fix= formula, dyads that affect the network statistic (i.e., have
nonzero change statistic) for any the terms will be fixed at their current values. For the terms in the vary=
formula, only those that change at least one of the terms will be allowed to vary, and all others will be fixed.
A formula passed without an argument name will default to fix=, for consistency with other constraints’
semantics.

The key to our treatment of the coleNW network using the Dyads operator is the Semester vertex attribute:

table(coleNW %v% "Semester")

Fall Spring
73 73

In particular, the nodematch("Semester") term has a change statistic equal to one for exactly those dyads
representing boys measured during the same semester, and this change statistic is zero otherwise. Therefore,
in our 146-node directed network there are 146 × 145, or 21,170, total dyads, of which 2 × 73 × 72, or 10,512,
have nonzero change statistics for nodematch("Semester").

We can easily see exactly how many total edges there are and verify that they all match on the “Semester”
variable:

summary(coleNW ~ edges + nodematch("Semester"))

edges nodematch.Semester
506 506
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Another way to verify that no edges exist between Fall semester and Spring semester nodes uses the mm (for
mixingmatrix) term:

summary(coleNW ~ mm("Semester", levels2 = TRUE))

mm[Semester=Fall,Semester=Fall] mm[Semester=Spring,Semester=Fall]
243 0

mm[Semester=Fall,Semester=Spring] mm[Semester=Spring,Semester=Spring]
0 263

If we ignore the constraints entirely, the edges coefficient is the log-odds, or logit, of 506 / 21170:

logit <- function (p) log(p / (1-p))
cbind(logit(506 / 21170),

coef(ergm(coleNW ~ edges)))

[,1] [,2]
edges -3.709612 -3.709612

Next, we use the Dyads constraint allowing only those dyads with nonzero change statistics for
nodematch("Semester") to vary, and verify that we now obtain the log-odds of 506 / 10512:

cbind(logit(506 / 10512),
coef(ergm(coleNW ~ edges,

constraints = ~ Dyads(vary = ~ nodematch("Semester")))))

[,1] [,2]
edges -2.984404 -2.984404

A significant limitation of this particular constraint is that its initialization requires testing every possible
dyad and therefore takes up time and memory in proportion to the square of the number of nodes.

Constraints via blocks

We may reproduce the example above using the blocks operator, which constrains changes to any dyads that
involve certain pairs of categories defined by a particular nodal covariate. First, consider the full complement
of statistics produced by the nodemix model term:

summary(coleNW ~ nodemix("Semester",
levels = TRUE, levels2 = TRUE))

mix.Semester.Fall.Fall mix.Semester.Spring.Fall
243 0

mix.Semester.Fall.Spring mix.Semester.Spring.Spring
0 263

The levels = TRUE argument ensures that nodemix considers every value of "group" in constructing a
mixing matrix of possible dyad combinations. The levels2 = TRUE argument ensures that, from the full
complement of such possible combinations, every one is included as a statistic. By default, levels = TRUE
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whereas levels2 = -1, since we frequently want to exclude at least one possible mixing combination to
avoid collinearity in a model that also includes the edges term.

We may now use levels2 in conjunction with blocks to select exactly which of the nodemix combinations
should be constrained as fixed, namely, the second and third statistics from the full mixing matrix:

# This coefficient estimate should match the example above
coef(ergm(coleNW ~ edges,

constraints = ~ blocks("Semester", levels2 = c(2, 3))))

edges
-2.984404

Additional examples using levels2, among other nodal attribute features, are contained in the
nodal_attributes vignette within the ergm package.

3. Tuning ERGM estimation

Recent versions of ergm allow for more control over various aspects of the ERGM fitting process, such as the
Metropolis-Hastings proposal distribution and various algorithmic control parameters. Here, we illustrate
some of these features using an example from Section 5 of Krivitsky et al (2022) in which we estimate the
parameters of an ergm for a hypothetical network on 50,000 nodes.

Our network will be based on the cohab dataset in the ergm package, which consists of three R objects, none
of them a network object. These objects are based on aggregated statistics from the National Survey of
Family Growth (NSFG).

• cohab_PopWts: A set of NSFG demographic attributes—sex, age, and race/ethnicity/immigration
status—along with weights that have been adjusted to match the demographics of King County in
Washington State.

• cohab_TargetStats: A vector of expected statistics for a 15-term ERGM applied to a network of
50,000 nodes, with in which a tie represents a heterosexual cohabition relationship between two nodes.

• cohab_MixMat: A Mixing matrix on the ‘race’ variable, giving the number of cohabiting male-female
pairs of each possible combination of ‘race’ values. The five values of this variable, which captures
some aspects of race/ethnicity/immigration status, are Black, Black immigrant, Hispanic, Hispanic
immigrant, and White. The 5×5 mixing matrix is, like cohab_PopWts, based on NSFG data reweighted
to match King County demographics.

Additional information about the cohab dataset is available by typing help(cohab).

The column names of cohab_PopWts tell us which nodal attributes we need to set for our 50,000-node
network:

data("cohab")
names(cohab_PopWts)

[1] "weight" "age" "race" "sex" "sex.ident"
[6] "othr.net.deg" "agesq" "sqrt.age.adj"
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The first column of cohab_PopWts is the set of weights, proportional to the probabilities we will use to
construct our random set of 50,000 nodes so that it matches the demographics of King County. The value
of agesq is simply the square of age, and sqrt.age.adj is the square root of age with a small upward
adjustment for females.

Letting nw denote our 50,000 network, the ERGM formula we wish to use is the same one used to generate
the cohab_TargetStats object according to ?cohab:

cohab.formula <-
(nw ~ edges + nodefactor("sex.ident", levels = 3)

+ nodecov("age") + nodecov("agesq")
+ nodefactor("race", levels = -5)
+ nodefactor("othr.net.deg", levels = -1)
+ nodematch("race", diff = TRUE) + absdiff("sqrt.age.adj"))

Recall that we do not actually need to observe the nw network to fit an ERGM, although we do need the
nodes in the network to be specified. Thus, our code first creates a network containing no edges in which the
nodal attributes are selected according to the weights specified by cohab_PopWts.

set.seed(4321)
net_size <- 50000
nw <- network.initialize(net_size, directed = FALSE)
inds <- sample(seq_len(NROW(cohab_PopWts)),

net_size, TRUE, cohab_PopWts$weight)
set.vertex.attribute(nw, names(cohab_PopWts)[-1],

cohab_PopWts[inds,-1])

In this network, a tie is by definition a heterosexual cohabitation relationship and we assume that no individual
may have more than one such relationship. We wish to constrain the set of allowable networks according
these assumptions, which we may accomplish using the bd (bounded degree) and blocks constraints: Thus,
the following formula will be passed to the ergm function via the constraints= argument:

constraint.formula <-
(~ bd(maxout = 1)
+ blocks(attr = ~sex, levels2 = diag(TRUE, 2)))

We may now fit the model. This takes a few minutes, so we’ll start it and describe some of the control
parameters as it runs:

set.seed(1234)
fit <- ergm(cohab.formula,

target.stats = cohab_TargetStats,
eval.loglik = FALSE,
constraints = constraint.formula,
control = snctrl(

MCMC.prop = ~strat(attr = ~race, empirical = TRUE) + sparse,
init.method = "MPLE",
init.MPLE.samplesize = 5e7,
MPLE.constraints.ignore = TRUE,
MCMLE.effectiveSize = 64,
SAN.nsteps = 5e7,
SAN.prop=~strat(attr = ~race, pmat = cohab_MixMat) + sparse))
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In RStudio, typing ?snctrl shows all of the control arguments that may be used. The improvements to
the fitting algorithm are not merely due to an expand list of control arguments; coding efficiencies too have
resulted in quicker fitting. According to Krivitsky et al (2022), the example we just considered took anywhere
from 1.3 hours to 22.64 hours to fit using ergm version 3.10, depending on the settings used.

Finally, we may examine the set of estimated coefficients.

coef(summary(fit))

Estimate Std. Error MCMC % z value
edges 0.785277529 0.4839693005 0 1.6225772
nodefactor.sex.ident.msmf -1.509318824 0.2043290557 0 -7.3867068
nodecov.age -0.401146744 0.0143411971 0 -27.9716360
nodecov.agesq 0.006836269 0.0002244601 0 30.4564931
nodefactor.race.B 1.398141315 0.1564859096 0 8.9346147
nodefactor.race.BI 1.303563897 0.1645346127 0 7.9227336
nodefactor.race.H 2.748098856 0.1416603826 0 19.3992054
nodefactor.race.HI 1.430449584 0.1051492120 0 13.6039972
nodefactor.othr.net.deg.1 -4.542462603 0.1292577459 0 -35.1426723
nodematch.race.B 3.258740036 0.2550856025 0 12.7750841
nodematch.race.BI 3.914819910 0.2603545458 0 15.0364953
nodematch.race.H 0.050088295 0.1998123726 0 0.2506766
nodematch.race.HI 2.883540053 0.1490205662 0 19.3499470
nodematch.race.W 3.003038059 0.1347766112 0 22.2815964
absdiff.sqrt.age.adj -3.143347800 0.0571064224 0 -55.0436828

Pr(>|z|)
edges 1.046798e-01
nodefactor.sex.ident.msmf 1.505100e-13
nodecov.age 3.597251e-172
nodecov.agesq 9.827730e-204
nodefactor.race.B 4.085994e-19
nodefactor.race.BI 2.323451e-15
nodefactor.race.H 7.837344e-84
nodefactor.race.HI 3.791330e-42
nodefactor.othr.net.deg.1 1.504186e-270
nodematch.race.B 2.259033e-37
nodematch.race.BI 4.233789e-51
nodematch.race.H 8.020641e-01
nodematch.race.HI 2.040520e-83
nodematch.race.W 5.573561e-110
absdiff.sqrt.age.adj 0.000000e+00

4. Term operators

ergm 4 introduces a new way to augment an ergm function call that we call a term operator, or simply
operator. In mathematics, an operator is a function, like differentiation, that takes functions as its inputs;
analogously, a term operator takes one or more ERGM formulas as input and transforms them by modifying
their inputs and/or outputs.

Most ergm operators have the form X(formula, ...) where X is the name of the operator, typically
capitalized, formula is a one-sided formula specifying the network statistics to be evaluated, and the
remaining arguments control the transformation applied to the network before formula is evaluated and/or
to the transformation applied to the network statistics obtained by evaluating formula. Operators are
documented alongside other terms, accessible as help("[name]-ergmTerm") or ergmTerm?[name]
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Filtering edges

The operator F(formula, filter) evaluates the terms in formula on a filtered network, with filtering
specified by filter. Here, filter is the right-hand side of a formula that must contain one binary dyad-
independent ergm term, having exactly one statistic with a dyadwise contribution of 0 for a 0-valued dyad.
That is, the term must be expressible as

g(y) =
∑

(i,j)∈Y

fi,j(yi,j), (1)

where for all possible (i, j), fi,j(0) = 0. One may verify that this condition implies that an ERGM containing
the single term g(y) has the property that the dyads Yi,j are jointly independent, which is why such a term
is called “dyad-independent”. Examples of such terms include nodemix, nodematch, nodefactor, nodecov,
and edgecov. Then, formula will be evaluated on a network constructed by taking y and keeping only those
edges for which fi,j(yi,j) ̸= 0. This predicate can be modified slightly by very simple comparison or logical
expressions in the filter formula. In particular, placing ! in front of the term negates it (i.e., keep (i, j)
only if fi,j(yi,j) = 0) and comparison operators (==, <, etc.) allow comparing fi,j(yi,j) to values other than 0.

Sampson’s Monks can provide illustrative examples. ergm includes a version of these data reporting cumulative
liking nominations over the three time periods Sampson asked a group of monks to identify those they
liked. We may plot this directed, 18-node network, where in the labels we use “L”, “O”, or “T” to indicate
Sampson’s categorization of each monk as a Loyalist, Outcast, or Young Turk:

set.seed(123)
data("sampson")
lab <- paste0(1:18, " ", substr(samplike %v% "group", 1, 1),

": ", samplike %v% "vertex.names")
plot(samplike, displaylabels=TRUE, label = lab)

1 T: John Bosco

2 T: Gregory

3 O: Basil

4 L: Peter

5 L: Bonaventure

6 L: Berthold

7 T: Mark

8 L: Victor
9 L: Ambrose

10 L: Romauld
11 L: Louis

12 T: Winfrid

13 O: Amand 14 T: Hugh

15 T: Boniface
16 T: Albert

17 O: Elias18 O: Simplicius

As an example of the F operator, the code below uses four different methods to summarize the number of ties
between pairs of nodes in the Turks group:

summary(
(samplike ~ nodematch("group", diff = TRUE, levels = "Turks")

+ F( ~ nodematch("group"), ~ nodefactor("group", levels = "Turks"))
+ F( ~ edges, ~ nodefactor("group", levels = "Turks") == 2)
+ F( ~ edges, ~ !nodefactor( ~ group != "Turks"))))

nodematch.group.Turks
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30
F(nodefactor("group",levels="Turks"))~nodematch.group

30
F(nodefactor("group",levels="Turks")==2)~edges

30
F(!nodefactor(~group!="Turks"))~edges

30

Here, the third method works because this particular fi,j(yi,j) counts how many of the two nodes i and j are
Turks, and so equals 2 if and only if both are; and the fourth method works because the new fi,j(yi,j) is 0
exactly when neither i nor j is a Turk.

It is also possible to filter on a quantitative variable. For instance, an alternative way to count the number of
edges in faux.mesa.high that match on "Grade" is to report total edges after filtering by node pairs whose
absolute difference on the "Grade" variable is less than 1:

cbind(summary(faux.mesa.high ~ nodematch("Grade")),
summary(

faux.mesa.high ~ F( ~ edges, ~ absdiff("Grade") < 1)))

[,1] [,2]
nodematch.Grade 163 163

While filter must be dyad-independent, formula can have dyad-dependent terms as well. For instance, we
may count the transitive triples—i.e., triples (i, j, k) where yi,j = yj,k = yi,k = 1—in the samplike network,
then perform the same count on the subnetwork consisting only of those edges connecting two monks not in
attendance in the minor seminary of Cloisterville before coming to the monastery:

summary((samplike ~ ttriple
+ F( ~ ttriple, ~ nodefactor("cloisterville") == 0)))

ttriple
154

F(nodefactor("cloisterville")==0)~ttriple
12

Treating directed networks as undirected

The operator Symmetrize(formula, rule) evaluates the terms in formula on an undirected network
constructed by symmetrizing the underlying directed network according to rule. The possible values of rule,
which match the terminology of the symmetrize function of the sna package, are (a) “weak”, (b) “strong”,
(c) “upper”, and (d) “lower”. These four values result in an undirected tie between i and j, given any i < j, if
and only if:

• weak: either yi,j or yj,i equals 1;

• strong: both yi,j and yj,i equal 1;

• upper: yi,j = 1;

• lower: yj,i = 1

For example, we can compute the number of node pairs i < j with reciprocated edges, equivalent to mutuality:
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summary((samplike ~ Symmetrize( ~ edges, "strong") + mutual))

Symmetrize(strong)~edges mutual
28 28

We can also compute the number of node pairs in which at least one edge is present; adding this value to the
number of mutually connected node pairs (so that the latter are counted twice each) yields the total number
of directed edges:

summary((samplike ~ Symmetrize( ~ edges, "weak") + edges))

Symmetrize(weak)~edges edges
60 88

Extracting subgraphs

The operator S(formula, attrs) evaluates the terms in formula on an induced subgraph constructed from
vertices identified by attrs, a formula that can be one-sided or, to make the induced subgraph bipartite,
two-sided. For instance, suppose that we wish to model the density and mutuality dynamics within the group
“Young Turks” as different from those of the rest of the network:

coef(summary(
ergm(

(samplike ~ edges + mutual
+ S( ~ edges + mutual, ~ (group == "Turks"))),

control = snctrl(seed = 123))))

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.007074 0.2377493 0 -8.441979 3.120095e-17
mutual 2.351613 0.4996500 0 4.706519 2.519819e-06
S((group=="Turks"))~edges 2.812378 0.8650057 0 3.251282 1.148857e-03
S((group=="Turks"))~mutual -2.165222 1.1965294 0 -1.809585 7.036009e-02

Thus, the density within the group is statistically significantly higher, whereas the reciprocation within the
group is lower, though not statistically significantly at the 5% level.

The attrs argument of the S(formula, attrs) operator either takes a value as explained in the
?nodal_attributes online help or, to obtain a bipartite network, a two-sided formula with the left-hand
side specifying the tails and the right-hand side specifying the heads.

As another example, consider the directed edges from non-Young Turks to Young Turks. Creating the induced
subgraph from these edges results in a bipartite network, shown in the figure.

1 2

3 4 5 6

7

8 9 10 11

12

13

14 15 16

1718Non-Turks

Turks

The emphasized edges in the figure are those involved in a 4-cycle. We can define the bipartite network,
and count the 4-cycles in two ways: If only directed edges from non-Turks to Turks (black in the figure) are
viewed as bipartite edges, there are three 4-cycles.
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summary((samplike ~
S( ~ cycle(4), (group != "Turks") ~ (group == "Turks"))))

S((group!="Turks"),(group=="Turks"))~cycle4
3

If we also include edges from Turks to non-Turks (dotted red in the figure) via Symmetrize and the “weak”
rule, we get two more.

summary(samplike
~ Symmetrize(

~ S( ~ cycle(4), (group != "Turks") ~ (group == "Turks")),
"weak"))

Symmetrize(weak)~S((group!="Turks"),(group=="Turks"))~cycle4
5

The last example also illustrates that term operators may be nested arbitrarily.

Finally, we illustrate a common use case in which Symmetrize is used to analyze mutuality in a directed
network as a function of a predictor. The faux.dixon.high dataset is a directed friendship network of
seventh through twelfth graders. Suppose we wish to check how strongly the tendency toward mutuality in
friendships is affected by students’ closeness in grade level.

data("faux.dixon.high")
FDHfit <- ergm(faux.dixon.high ~ edges + mutual + absdiff("grade")

+ Symmetrize( ~ absdiff("grade"), "strong"),
control = snctrl(seed=321))

coef(summary(FDHfit) )

Estimate Std. Error MCMC % z value
edges -3.2468082 0.05110162 0 -63.536313
mutual 3.2407587 0.12095858 0 26.792301
absdiff.grade -0.9145735 0.04309196 0 -21.223763
Symmetrize(strong)~absdiff.grade -0.4237874 0.18035755 0 -2.349707

Pr(>|z|)
edges 0.000000e+00
mutual 3.972740e-158
absdiff.grade 5.762326e-100
Symmetrize(strong)~absdiff.grade 1.878819e-02

After correcting for the overall network density, the propensity for friendships to be reciprocated, and the
predictive effect of grade difference on friendship formation, the difference in grade level has a statistically
significant negative effect on the tendency to form mutual friendships (p-value = 0.019).

Interaction effects

For binary ERGMs, interactions between dyad-independent ergm terms can be specified in a manner similar
to lm and glm via the : and * operators.
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Let us first consider the colon (:) operator. Generally, if term A creates pA statistics and term B creates pB

statistics, then A:B will create pA × pB new statistics. If A and B are dyad-independent terms, expressed for
a = 1, . . . , pA and b = 1, . . . , pB as

ga(y) =
∑

(i,j)∈Y

ua
i,jyi,j and hb(y) =

∑
(i,j)∈Y

vb
i,jyi,j

for appropriate covariate matrices Ua and V b, then the corresponding interaction term is

ga:b(y) =
∑

(i,j)∈Y

ua
i,jvb

i,jyi,j . (2)

As an example, consider the Grade and Sex effects, expressed as model terms via nodefactor, in the
faux.mesa.high dataset:

summary(faux.mesa.high ~ nodefactor("Grade", levels = TRUE) : nodefactor("Sex"))

nodefactor.Grade.7:nodefactor.Sex.M nodefactor.Grade.8:nodefactor.Sex.M
70 99

nodefactor.Grade.9:nodefactor.Sex.M nodefactor.Grade.10:nodefactor.Sex.M
63 46

nodefactor.Grade.11:nodefactor.Sex.M nodefactor.Grade.12:nodefactor.Sex.M
38 26

In the call above, we deliberately include all Grade-factor levels via levels=TRUE, whereas we employ the
default behavior of nodefactor for the Sex factor, which leaves out one level. Thus, the 6-level Grade factor
and the 2-level Sex factor, with one level of the latter omitted, produce 6×1 interaction terms in this example.

The * operator, by contrast, produces all interactions in addition to the main effects or statistics. Therefore,
in the scenario described above, A*B will add pA + pB + pA × pB statistics to the model. Below, we use the
default behavior of nodefactor on both the 6-level Grade factor and the 2-level Sex factor, together with an
additional edges term, to produce a model with 1 + 5 + 1 + 5 × 1 terms:

m <- ergm(faux.mesa.high ~ edges + nodefactor("Grade") * nodefactor("Sex"))
print(summary(m), digits = 3)

Call:
ergm(formula = faux.mesa.high ~ edges + nodefactor("Grade") *

nodefactor("Sex"))

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value
edges -3.028 0.173 0 -17.53
nodefactor.Grade.8 -1.424 0.263 0 -5.41
nodefactor.Grade.9 -1.166 0.229 0 -5.10
nodefactor.Grade.10 -1.633 0.357 0 -4.58
nodefactor.Grade.11 -0.328 0.237 0 -1.38
nodefactor.Grade.12 -0.794 0.324 0 -2.45
nodefactor.Sex.M -1.764 0.240 0 -7.36
nodefactor.Grade.8:nodefactor.Sex.M 1.386 0.202 0 6.86
nodefactor.Grade.9:nodefactor.Sex.M 1.012 0.211 0 4.79
nodefactor.Grade.10:nodefactor.Sex.M 1.347 0.264 0 5.11
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nodefactor.Grade.11:nodefactor.Sex.M 0.419 0.240 0 1.75
nodefactor.Grade.12:nodefactor.Sex.M 1.059 0.290 0 3.65

Pr(>|z|)
edges < 1e-04 ***
nodefactor.Grade.8 < 1e-04 ***
nodefactor.Grade.9 < 1e-04 ***
nodefactor.Grade.10 < 1e-04 ***
nodefactor.Grade.11 0.16714
nodefactor.Grade.12 0.01429 *
nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.8:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.9:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.10:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.11:nodefactor.Sex.M 0.08074 .
nodefactor.Grade.12:nodefactor.Sex.M 0.00026 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 28987 on 20910 degrees of freedom
Residual Deviance: 2189 on 20898 degrees of freedom

AIC: 2213 BIC: 2308 (Smaller is better. MC Std. Err. = 0)

Interactions involving dyad-dependent terms are not straightforward, so ergm’s default behavior if : or * is
used with a dyad-dependent term is to return an error. This default behavior may be changed by setting the
interact.dependent option; see help("ergm-options") for more details.

Since interactions are defined by multiplying change statistics dyadwise and then summing over all dyads,
interactions of terms are not necessarily the same as terms derived from products. Here is an example using
the undirected Florentine marriage dataset:

data("florentine")
summary(flomarriage ~ nodecov("wealth") : nodecov("wealth")

+ nodecov( ~ wealth ˆ 2))

nodecov.wealth:nodecov.wealth nodecov.wealth^2
284058 187814

The reason the two statistics above are not the same is that nodecov("wealth") is expressed as

g(y) =
∑

(i,j)∈Y

ui,jyi,j

by setting ua
i,j = wealthi+wealthj . Thus, in the interaction term, each yi,j is multiplied by (wealthi+wealthj)2,

whereas in the wealth ˆ 2 term, each yi,j is multiplied by only wealth2
i + wealth2

j .

Reparametrizing the model

The term operator Sum(formulas, label) allows arbitrary linear combinations of existing statistics to
be added to the model. Suppose g1(y), . . . , gK(y) is a set of K vector-valued network statistics, each
corresponding to one or more ergm terms and of arbitrary dimension. Also suppose that A1, . . . , AK is a
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set of known constant matrices all having the same number of rows such that each matrix multiplication
Akgk(y) is well-defined. Then it is now possible to define the statistic

gSum(y) =
K∑

k=1
Akgk(y).

The first argument to Sum is a formula or a list of K formulas, each representing a vector statistic. If a
formula has a left-hand side, the left-hand side will be used to define the corresponding Ak matrix: If it is a
scalar or a vector, Ak will be a diagonal matrix thus multiplying each element by its corresponding element;
and if it is a matrix, Ak will be used directly. When no left-hand side is given, Ak is defined as 1. To simplify
this function for some common cases, if the left-hand side is "sum" or "mean", the sum (or mean) of the
statistics in the formula is calculated.

As an example, consider a vector of statistics consisting of the numbers of friendship ties received by each
subgroup of Sampson’s monks:

summary(samplike ~ nodeifactor("group", levels = TRUE) )

nodeifactor.group.Loyal nodeifactor.group.Outcasts
29 13

nodeifactor.group.Turks
46

We may create a single statistic equal to the friendship ties received by both groups of non-Outcasts by
adding the first and third components of the nodefactor vector, either by left-multiplying by

[
1 0 1

]
or

by deselecting the second component at the nodeifactor level and summing the remaining two:

summary(samplike ~
Sum(cbind(1, 0, 1) ~ nodeifactor("group", levels = TRUE), "nf.L_T")
+ Sum("sum" ~ nodeifactor("group", levels = -2), "nf.L_T"))

Sum~nf.L_T Sum~nf.L_T
75 75

Whereas the Sum operator calculates linear combinations of network statistics, the Prod operator calculates
the products of their powers. As of this writing, it is implemented for positive statistics only, by first applying
the Log operator (which returns the natural logarithm, log in R, of the statistics passed to it), then the
Sum operator, and finally the Exp operator (which returns the exponential function, exp in R). As a simple
illustration, we may verify that the Sum and Prod operators do in fact produce network statistics as expected
if we simply use each with a list of formulas having no left hand side:

summary(faux.dixon.high ~ edges + mutual
+ Sum(list( ~ edges, ~ mutual), "EdgesAndMutual")
+ Prod(list( ~ edges, ~ mutual), "EdgesAndMutual"))

edges mutual Sum~EdgesAndMutual
1197 219 1416

Exp~Sum~EdgesAndMutual
262143
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5. Modeling multiple networks

The ergm.multi package provides support for modeling multiple networks, as we illustrate in this section
using datasets supplied in that package.

First, load the ergm.multi package along with some helper packages. You might need to use
install.packages first if any of these is not yet installed:

library(ergm.multi)
library(dplyr)
library(purrr)
library(tibble)

Obtaining data

The list of networks studied by Goeyvaerts et al (2018) is included in this package:

data(Goeyvaerts)
length(Goeyvaerts)

[1] 318

An explanation of the networks, including a list of their network (%n%) and vertex (%v%) attributes, can be
obtained via ?Goeyvaerts. A total of 318 complete networks were collected, then two more excluded due to
“nonstandard” family composition:

Goeyvaerts %>% discard(`%n%`, "included") %>% map(as_tibble, unit="vertices")

[[1]]
# A tibble: 4 x 5

vertex.names age gender na role
<int> <int> <chr> <lgl> <chr>

1 1 32 F FALSE Mother
2 2 48 F FALSE Grandmother
3 3 32 M FALSE Father
4 4 10 F FALSE Child

[[2]]
# A tibble: 3 x 5

vertex.names age gender na role
<int> <int> <chr> <lgl> <chr>

1 1 29 F FALSE Mother
2 2 28 F FALSE Mother
3 3 0 F FALSE Child

To reproduce the analysis, exclude them as well:

G <- Goeyvaerts %>% keep(`%n%`, "included")
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Data summaries

Obtain weekday indicator, network size, and density for each network, and summarize them as in Goeyvaerts
et al (2018), Table 1:

G %>% map(~list(weekday = . %n% "weekday",
n = network.size(.),
d = network.density(.))) %>% bind_rows() %>%

group_by(weekday, n = cut(n, c(1,2,3,4,5,9))) %>%
summarize(nnets = n(), p1 = mean(d==1), m = mean(d)) %>% kable()

weekday n nnets p1 m
FALSE (1,2] 3 1.0000000 1.0000000
FALSE (2,3] 19 0.7368421 0.8771930
FALSE (3,4] 48 0.8541667 0.9618056
FALSE (4,5] 18 0.7777778 0.9500000
FALSE (5,9] 3 1.0000000 1.0000000
TRUE (1,2] 9 1.0000000 1.0000000
TRUE (2,3] 53 0.9056604 0.9622642
TRUE (3,4] 111 0.7747748 0.9279279
TRUE (4,5] 39 0.6410256 0.8974359
TRUE (5,9] 13 0.4615385 0.8454212

Reproducing ERGM fits

We now reproduce the ERGM fits. First, we extract the weekday networks:

G.wd <- G %>% keep(`%n%`, "weekday")
length(G.wd)

[1] 225

Next, we specify the multi-network model using the N(formula, lm) operator. This operator will evaluate
the ergm formula formula on each network, weighted by the predictors passed in the one-sided lm formula,
which is interpreted the same way as that passed to the built-in lm() function, with its “data” being the
table of network attributes.

Since different networks may have different compositions, to have a consistent model, we specify a consistent
list of family roles.

roleset <- sort(unique(unlist(lapply(G.wd, `%v%`, "role"))))

We now construct the formula object, which will be passed directly to ergm():

# Networks() function tells ergm() to model these networks jointly.
f.wd <- Networks(G.wd) ~

# This N() operator adds three edge counts:
N(~edges,

~ # one total for all networks (intercept implicit as in lm),
I(n<=3)+ # one total for only small households, and
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I(n>=5) # one total for only large households.
) +

# This N() construct evaluates each of its terms on each network,
# then sums each statistic over the networks:
N(

# First, mixing statistics among household roles, including only
# father-mother, father-child, and mother-child counts.
# Since tail < head in an undirected network, in the
# levels2 specification, it is important that tail levels (rows)
# come before head levels (columns). In this case, since
# "Child" < "Father" < "Mother" in alphabetical order, the
# row= and col= categories must be sorted accordingly.

~mm("role", levels = I(roleset),
levels2=~.%in%list(list(row="Father",col="Mother"),

list(row="Child",col="Father"),
list(row="Child",col="Mother"))) +

# Second, the nodal covariate effect of age, but only for
# edges between children.
F(~nodecov("age"), ~nodematch("role", levels=I("Child"))) +
# Third, 2-stars.
kstar(2)

) +

# This N() adds one triangle count, totalled over all households
# with at least 6 members.
N(~triangles, ~I(n>=6))

See ergmTerm?mm for documentation on the mm term used above. Now, we can fit the model:

fit.wd <- ergm(f.wd)

summary(fit.wd)

Call:
ergm(formula = f.wd)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error
N(1)~edges 0.84277 0.53315
N(I(n <= 3)TRUE)~edges 1.48525 0.43480
N(I(n >= 5)TRUE)~edges -0.80143 0.20811
N(1)~mm[role=Child,role=Father] -0.63765 0.48484
N(1)~mm[role=Child,role=Mother] 0.13614 0.52994
N(1)~mm[role=Father,role=Mother] 0.25377 0.58752
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age -0.07154 0.01695
N(1)~kstar2 -0.25767 0.21225
N(1)~triangle 2.05168 0.31374
N(I(n >= 6)TRUE)~triangle -0.28102 0.10850

MCMC % z value Pr(>|z|)
N(1)~edges 0 1.581 0.113936
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N(I(n <= 3)TRUE)~edges 0 3.416 0.000636
N(I(n >= 5)TRUE)~edges 0 -3.851 0.000118
N(1)~mm[role=Child,role=Father] 0 -1.315 0.188450
N(1)~mm[role=Child,role=Mother] 0 0.257 0.797254
N(1)~mm[role=Father,role=Mother] 0 0.432 0.665792
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age 0 -4.220 < 1e-04
N(1)~kstar2 0 -1.214 0.224754
N(1)~triangle 0 6.539 < 1e-04
N(I(n >= 6)TRUE)~triangle 0 -2.590 0.009600

N(1)~edges
N(I(n <= 3)TRUE)~edges ***
N(I(n >= 5)TRUE)~edges ***
N(1)~mm[role=Child,role=Father]
N(1)~mm[role=Child,role=Mother]
N(1)~mm[role=Father,role=Mother]
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age ***
N(1)~kstar2
N(1)~triangle ***
N(I(n >= 6)TRUE)~triangle **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 1975 on 1425 degrees of freedom
Residual Deviance: 611 on 1415 degrees of freedom

AIC: 631 BIC: 683.6 (Smaller is better. MC Std. Err. = 0.6565)

Similarly, we can extract the weekend network, and fit it to a smaller model. We only need one N() operator,
since all statistics are applied to the same set of networks, namely, all of them.

G.we <- G %>% discard(`%n%`, "weekday")
fit.we <- ergm(Networks(G.we) ~

N(~edges +
mm("role", levels=I(roleset),

levels2=~.%in%list(list(row="Father",col="Mother"),
list(row="Child",col="Father"),
list(row="Child",col="Mother"))) +

F(~nodecov("age"), ~nodematch("role", levels=I("Child"))) +
kstar(2) +
triangles))

summary(fit.we)

Call:
ergm(formula = Networks(G.we) ~ N(~edges + mm("role", levels = I(roleset),

levels2 = ~. %in% list(list(row = "Father", col = "Mother"),
list(row = "Child", col = "Father"), list(row = "Child",

col = "Mother"))) + F(~nodecov("age"), ~nodematch("role",
levels = I("Child"))) + kstar(2) + triangles))

Monte Carlo Maximum Likelihood Results:
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Estimate Std. Error
N(1)~edges 2.1574 1.4273
N(1)~mm[role=Child,role=Father] -1.1795 1.4697
N(1)~mm[role=Child,role=Mother] 0.1391 1.5732
N(1)~mm[role=Father,role=Mother] -0.7507 1.5343
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age -0.1765 0.0519
N(1)~kstar2 -0.8488 0.3592
N(1)~triangle 3.5582 0.7602

MCMC % z value Pr(>|z|)
N(1)~edges 0 1.511 0.130662
N(1)~mm[role=Child,role=Father] 0 -0.803 0.422257
N(1)~mm[role=Child,role=Mother] 0 0.088 0.929571
N(1)~mm[role=Father,role=Mother] 0 -0.489 0.624649
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age 0 -3.400 0.000674
N(1)~kstar2 0 -2.363 0.018127
N(1)~triangle 0 4.680 < 1e-04

N(1)~edges
N(1)~mm[role=Child,role=Father]
N(1)~mm[role=Child,role=Mother]
N(1)~mm[role=Father,role=Mother]
N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age ***
N(1)~kstar2 *
N(1)~triangle ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 802.7 on 579 degrees of freedom
Residual Deviance: 133.2 on 572 degrees of freedom

AIC: 147.2 BIC: 177.8 (Smaller is better. MC Std. Err. = 0.7987)

Diagnostics

Perform diagnostic simulation (Krivitsky et al, 2022c), summarize the residuals, and make residuals vs. fitted
and scale-location plots:

gof.wd <- gofN(fit.wd, GOF = ~ edges + kstar(2) + triangles)

Constructing simulation model(s).

Constructing GOF model.

Simulating unconstrained sample.

Collating the simulations.

Summarizing.

summary(gof.wd)
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$‘Observed/Imputed values‘
edges kstar2 triangle

Min. : 1.000 Min. : 0.00 Min. : 0.000
1st Qu.: 3.000 1st Qu.: 3.00 1st Qu.: 1.000
Median : 6.000 Median :12.00 Median : 4.000
Mean : 5.778 Mean :13.55 Mean : 4.324
3rd Qu.: 6.000 3rd Qu.:12.00 3rd Qu.: 4.000
Max. :18.000 Max. :78.00 Max. :23.000

NA’s :9 NA’s :9

$‘Fitted values‘
edges kstar2 triangle

Min. : 0.860 Min. : 2.620 Min. : 0.700
1st Qu.: 2.950 1st Qu.: 7.622 1st Qu.: 2.348
Median : 5.570 Median :10.610 Median : 3.390
Mean : 5.754 Mean :13.409 Mean : 4.277
3rd Qu.: 5.840 3rd Qu.:11.473 3rd Qu.: 3.743
Max. :14.920 Max. :59.360 Max. :19.680

NA’s :9 NA’s :9

$‘Pearson residuals‘
edges kstar2 triangle

Min. :-5.498132 Min. :-4.2209 Min. :-4.20054
1st Qu.: 0.215984 1st Qu.: 0.2233 1st Qu.: 0.19607
Median : 0.364671 Median : 0.3825 Median : 0.39214
Mean : 0.000977 Mean : 0.0052 Mean : 0.01461
3rd Qu.: 0.477977 3rd Qu.: 0.5123 3rd Qu.: 0.54272
Max. : 1.752754 Max. : 2.0089 Max. : 1.93910

NA’s :9 NA’s :9

$‘Variance of Pearson residuals‘
$‘Variance of Pearson residuals‘$edges
[1] 1.153315

$‘Variance of Pearson residuals‘$kstar2
[1] 1.091188

$‘Variance of Pearson residuals‘$triangle
[1] 1.028553

$‘Std. dev. of Pearson residuals‘
$‘Std. dev. of Pearson residuals‘$edges
[1] 1.073925

$‘Std. dev. of Pearson residuals‘$kstar2
[1] 1.044599

$‘Std. dev. of Pearson residuals‘$triangle
[1] 1.014176

Variances of Pearson residuals substantially greater than 1 suggest unaccounted-for heterogeneity.
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plot(gof.wd)

Warning in rep(a, length.out = np): ’x’ is NULL so the result will be NULL
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The plots don’t look unreasonable.

Also make plots of residuals vs. square root of fitted and vs. network size:

plot(gof.wd, against=~sqrt(.fitted))
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Warning in rep(a, length.out = np): ’x’ is NULL so the result will be NULL
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plot(gof.wd, against=~factor(n))

Warning in rep(a, length.out = np): ’x’ is NULL so the result will be NULL
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It looks like network-size effects are probably accounted for.
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6. Estimation in the presence of missing data

It is quite common that network data are incomplete in various ways. The ergm package includes the
capability to handle missing edge data, whereas other types of missingness such as missing nodal information
are not addressed.

We illustrate using the samplike dataset used earlier. Consider a simple model with edges, mutuality
(reciprocated dyads), transitive ties, and cyclical ties. For the sake of comparison, we first fit the model
assuming no missing edge data. First, verify that samplike has no missing edges:

print(samplike)

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 88

missing edges= 0
non-missing edges= 88

Vertex attribute names:
cloisterville group vertex.names

Edge attribute names:
nominations

Now fit the model:

summary(full.fit <-
ergm(samplike ~ edges + mutual + transitiveties + cyclicalties,

eval.loglik = TRUE), control = snctrl(seed = 321))

Call:
ergm(formula = samplike ~ edges + mutual + transitiveties + cyclicalties,

eval.loglik = TRUE)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -1.8974 0.3532 0 -5.372 <1e-04 ***
mutual 2.4841 0.4524 0 5.491 <1e-04 ***
transitiveties 0.5197 0.2982 0 1.743 0.0814 .
cyclicalties -0.4497 0.2445 0 -1.839 0.0659 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 424.2 on 306 degrees of freedom
Residual Deviance: 329.7 on 302 degrees of freedom

AIC: 337.7 BIC: 352.6 (Smaller is better. MC Std. Err. = 0.5833)
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Next, suppose that Monk #1 (John Bosco) refused to respond during all three waves, rendering his replies
missing:

samplike1 <- samplike
samplike1[1, ] <- NA
print(samplike1)

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 99

missing edges= 17
non-missing edges= 82

Vertex attribute names:
cloisterville group vertex.names

Edge attribute names:
nominations

If we pass this modified object to ergm, it will automatically calculate the MLE under the assumption that
the monk’s refusal is unrelated to his choice of relations, i.e., that the data are ignorably missing with respect
to the specified model:

summary(m1.fit <-
ergm(samplike1 ~ edges + mutual + transitiveties + cyclicalties,

eval.loglik = TRUE), control = snctrl(seed = 321))

Call:
ergm(formula = samplike1 ~ edges + mutual + transitiveties +

cyclicalties, eval.loglik = TRUE)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0075 0.3868 0 -5.190 <1e-04 ***
mutual 2.4566 0.4913 0 5.000 <1e-04 ***
transitiveties 0.4891 0.4065 0 1.203 0.229
cyclicalties -0.3303 0.3760 0 -0.879 0.380
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 312.9 on 285 degrees of freedom

AIC: 320.9 BIC: 335.5 (Smaller is better. MC Std. Err. = 0.5789)

The degrees of freedom associated with the missing data fit have decreased because unobserved dyads do not
carry information.
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For the theoretical grounding of the ergm package’s algorithm for networks with missing edges, see Krivitsky
et al (2022d), which is based on the framework developed by Handcock and Gile (2010). For more on the
ignorability assumption for edge variables, see Handcock and Gile (2010).

The estimation approach above can be extended to other types of incomplete network observation. Karwa
et al. (2017) applied it to fit arbitrary ERGMs to networks whose dyad values had been stochastically
perturbed—ties added and removed at random, with known probabilities—in order to preserve privacy.
Another use case is multiple imputation for networks with missing data, in which multiple random versions of
the full network are constructed by randomly inserting values for unobserved dyads according to probabilities
that are determined based on, say, some type of logistic regression model.

These mechanisms may be invoked by passing an obs.constraints formula, specifying how the network of
interest was observed. Of particular interest are the following constraints:

observed restricts the proposal to changing only those dyads that are recorded as missing.

egocentric(attr = NULL, direction = c("both", "out", "in") ) restricts the proposal to changing
only those dyads that would not be observed in an egocentric sample. That is, dyads cannot be modified
that are incident on vertices for which attribute specification attr has value TRUE or, if attr is NULL,
the vertex attribute "na" has value FALSE. For directed networks, direction=="out" only preserves
the out-dyads of those actors, and direction=="in" preserves their in-dyads.

dyadnoise(p01, p10) Unlike the others, this is a soft constraint to adjust the sampled distribution for
dyad-level noise with known perturbation probabilities, which can arise in a variety of contexts. It is
assumed that the observed LHS network is a noisy observation of some unobserved true network, with
p01 giving the dyadwise probability of erroneously observing a tie where the true network had a non-tie
and p10 giving the dyadwise probability of erroneously observing a nontie where the true network had
a tie. p01 and p10 can be either both be scalars or both be adjacency matrices of the same dimension
as that of the LHS network giving these probabilities.

We may use the obs.constraints argument to re-fit the model above:

samplike2 <- samplike
samplike2[1,] <- 0 # Careful! Zeros are not the same as missing, but...
samplike2 %v% "refused" <-

rep(c(TRUE,FALSE),c(1,17)) # This new nodal covariate labels who is missing
print(samplike2)

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 82

missing edges= 0
non-missing edges= 82

Vertex attribute names:
cloisterville group refused vertex.names

Edge attribute names:
nominations
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summary(m2.fit <-
ergm(samplike2 ~ edges + mutual + transitiveties + cyclicalties,

obs.constraints = ~ egocentric( ~ !refused, "out"),
control = snctrl(seed = 123) ) )

Call:
ergm(formula = samplike2 ~ edges + mutual + transitiveties +

cyclicalties, obs.constraints = ~egocentric(~!refused, "out"),
control = snctrl(seed = 123))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0149 0.4104 0 -4.910 <1e-04 ***
mutual 2.4407 0.4792 0 5.093 <1e-04 ***
transitiveties 0.4519 0.4335 0 1.042 0.297
cyclicalties -0.2832 0.3903 0 -0.726 0.468
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 314.0 on 285 degrees of freedom

AIC: 322 BIC: 336.6 (Smaller is better. MC Std. Err. = 0.5995)

Finally, the observational process can be included as a part of the network dataset using the %ergmlhs%
operation. If we do this, we do not need to explicitly pass the obs.constraints argument to the ergm
function:

samplike2 %ergmlhs% "obs.constraints" <- ~ egocentric( ~ !refused, "out")
summary(m3.fit <-

ergm(samplike2 ~ edges + mutual + transitiveties + cyclicalties),
control = snctrl(seed = 231) )

Call:
ergm(formula = samplike2 ~ edges + mutual + transitiveties +

cyclicalties)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0409 0.3773 0 -5.409 <1e-04 ***
mutual 2.4716 0.4719 0 5.238 <1e-04 ***
transitiveties 0.4148 0.4128 0 1.005 0.315
cyclicalties -0.2314 0.3691 0 -0.627 0.531
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 313.1 on 285 degrees of freedom

AIC: 321.1 BIC: 335.8 (Smaller is better. MC Std. Err. = 0.6085)
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7. Multilayer networks

Also known as multiplex, multirelational, or multivariate networks, in a multilayer network a pair of actors can
have multiple simultaneous relations of different types. For example, in the famous Lazega lawyer, each pair
of lawyers in the firm can have an advice relationship, a coworking relationship, a friendship relationship, or
any combination thereof. Application of ERGMs to multilayer networks has a long history (e.g., Pattison and
Wasserman 1999, Lazega and pattison 1999), and a number of R packages exist for analysing and estimating
them.

ergm.multi implements the general approach of Krivitsky, Koehly, and Marcum (2020) for specifying
multilayer ERGMs, including Layer Logic and the various cross-layer specifications. Its advantages include
seamless integration with ergm(), number of layers limited only by computing power, ability to incorporate
any ERGM effects into the framework, handling of networks that have both directed and undirected layers,
and experimental multimode/multilevel support.

Preparing multilayer networks for analysis

To keep things simple (and fast), we will use the Florentine dataset included with ergm. It comprises two
networks of relations among Florentine families, one of marriages, the other of business relations. Although
the following examples only include two layers, ergm.multi supports an arbitrary number.

data(florentine)

# Method 1: list of networks
flo <- Layer(list(m = flomarriage, b = flobusiness))

# Method 2: networks as arguments
flo <- Layer(m = flomarriage, b = flobusiness)

# Method 3: edge attributes:
flo2 <- flomarriage | flobusiness # superset of all edges in any layer
# set attributes
flo2[,, names.eval="m"] <- as.matrix(flomarriage)
flo2[,, names.eval="b"] <- as.matrix(flobusiness)
flo2

Network attributes:
vertices = 16
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 27

missing edges= 0
non-missing edges= 27

Vertex attribute names:
vertex.names

Edge attribute names:
b m
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flo <- Layer(flo2, c("m","b"))

flo

Combined 2 networks on ’.LayerID’/’.LayerName’:
1: n = 16, directed = FALSE, bipartite = FALSE, loops = FALSE
2: n = 16, directed = FALSE, bipartite = FALSE, loops = FALSE

Network attributes:
vertices = 32
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
ergm:

Length Class Mode
constraints 2 formula call

total edges= 35
missing edges= 0
non-missing edges= 35

Vertex attribute names:
.bipartite .LayerID .LayerName .undirected vertex.names

Edge attribute names:
b m

flo is now a network with some additional metadata set.

Incidentally, we can extract the network defined by a particular edge attribute using the network_view()
helper function:

all(as.matrix(network_view(flo2, "m")) == as.matrix(flomarriage))

[1] TRUE

We will also use the Lazega Lawyers data to illustrate available techniques. This dataset is included with the
ergm.multi package:

data(Lazega)
Lazega

Network attributes:
vertices = 71
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 1574

missing edges= 0
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non-missing edges= 1574

Vertex attribute names:
age gender office practice school seniority status vertex.names yrs_frm

Edge attribute names not shown

This network has a number of vertex attributes, including each lawyer’s demographic information, status in
the firm, and professional history. It also has three non-NA edge attributes,

list.edge.attributes(Lazega)

[1] "advice" "coworker" "friendship" "na"

head(Lazega %e%"advice")

[1] 1 1 1 1 1 0

head(Lazega %e%"coworker")

[1] 0 0 0 0 0 0

head(Lazega %e%"friendship")

[1] 0 0 0 0 0 1

each representing a type of relationship collected. Note that the edges of the network itself are a superset of
all layers’ edges:

all(Lazega %e%"advice" + Lazega %e%"coworker" + Lazega %e%"friendship" > 0)

[1] TRUE

We can extract the individual layers using a helper function network_view():

(L.a <- network_view(Lazega, "advice"))

Network attributes:
vertices = 71
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 892

missing edges= 0
non-missing edges= 892

Vertex attribute names:
age gender office practice school seniority status vertex.names yrs_frm

Edge attribute names not shown
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L.c <- network_view(Lazega, "coworker")
L.f <- network_view(Lazega, "friendship")

library(sna)
# Plot the advice network
coord <- gplot(L.a,
# Colour the vertex according to the practice.

vertex.col=as.numeric(as.factor(Lazega%v%"practice"))+1,
# Size the vertex according the seniority (2 if associate, 3 if partner):

vertex.cex=2+(Lazega%v%"status"=="partner"),
# # sides according to gender (2+1 for Female, 2+2 for Male):

vertex.sides=as.numeric(as.factor(Lazega%v%"gender"))+2,
displayisolates=FALSE)

text(coord, label=substr(Lazega%v%"office",1,1))
# Also, add a legend for colour, shape, plotting symbol, and letter:
legend("topleft",legend=levels(as.factor(Lazega%v%"practice")),

col=2:3,pch=19, title="Practice")
legend("topright",legend=levels(as.factor(Lazega%v%"gender")),

pch=c(2,5), title="Gender")
legend("bottomright",legend=levels(factor(Lazega%v%"status")),

pt.cex=c(2,3), pch=1, title="Status")
legend("bottomleft",legend=levels(factor(Lazega%v%"office")),

pch=substr(levels(factor(Lazega%v%"office")),1,1),title="Location")

B
B

H

B
H

HH

BBB
B

B

B

H

P

B
B

H

B
B

B

B
B

B

H

B
B

H

B

H
H

H
H

B

H

B

P

B
B

B

B
B

B

P

B

H
P

B

B

H

H

B
B B

B
B

B

H

H

B

B
B

H

B
B

B

B
B

B

B

B

Practice

corporate
litigation

Gender

man
woman

Status

associate
partner

B
H
P

Location

Boston
Hartford
Providence

# Plot the coworker network
coord <- gplot(L.c,
# Colour the vertex according to the practice.

vertex.col=as.numeric(as.factor(Lazega%v%"practice"))+1,
# Size the vertex according the seniority (2 if associate, 3 if partner):

vertex.cex=2+(Lazega%v%"status"=="partner"),
# # sides according to gender (2+1 for Female, 2+2 for Male):

vertex.sides=as.numeric(as.factor(Lazega%v%"gender"))+2,
displayisolates=FALSE)

text(coord, label=substr(Lazega%v%"office",1,1))
# Also, add a legend for colour, shape, plotting symbol, and letter:
legend("topleft",legend=levels(as.factor(Lazega%v%"practice")),
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col=2:3,pch=19, title="Practice")
legend("topright",legend=levels(as.factor(Lazega%v%"gender")),

pch=c(2,5), title="Gender")
legend("bottomright",legend=levels(factor(Lazega%v%"status")),

pt.cex=c(2,3), pch=1, title="Status")
legend("bottomleft",legend=levels(factor(Lazega%v%"office")),

pch=substr(levels(factor(Lazega%v%"office")),1,1),title="Location")
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# Plot the friendship network
coord <- gplot(L.f,
# Colour the vertex according to the practice.

vertex.col=as.numeric(as.factor(Lazega%v%"practice"))+1,
# Size the vertex according the seniority (2 if associate, 3 if partner):

vertex.cex=2+(Lazega%v%"status"=="partner"),
# # sides according to gender (2+1 for Female, 2+2 for Male):

vertex.sides=as.numeric(as.factor(Lazega%v%"gender"))+2,
displayisolates=FALSE)

text(coord, label=substr(Lazega%v%"office",1,1))
# Also, add a legend for colour, shape, plotting symbol, and letter:
legend("topleft",legend=levels(as.factor(Lazega%v%"practice")),

col=2:3,pch=19, title="Practice")
legend("topright",legend=levels(as.factor(Lazega%v%"gender")),

pch=c(2,5), title="Gender")
legend("bottomright",legend=levels(factor(Lazega%v%"status")),

pt.cex=c(2,3), pch=1, title="Status")
legend("bottomleft",legend=levels(factor(Lazega%v%"office")),

pch=substr(levels(factor(Lazega%v%"office")),1,1),title="Location")
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To model it, we need to tell ergm to interpret it as a multilayer network, which we do using the Layer()
function (not an ERGM term). In this case, the most convenient way to do so is by referencing edge attributes:

LLazega <- Layer(Lazega, c("advice", "coworker", "friendship"))

However, an optionally named list of networks or networks as named arguments are also accepted. We will
use it to shorten the layer names:

LLazega <- Layer(a=L.a, c=L.c, f=L.f)

More generally, Layer() will produce the “least common denominator” network: if any unipartite layers
are present, bipartite layers will be coerced to unipartite (with some additional metadata to ensure that
disallowed edges are never formed), and if any directed layers are present, all layers will be coerced to directed.
It is possible to use Symmetrize() and S() (Subgraph) operators to evaluate undirected and bipartite effects
on these layers.

Specifying models for multilayer networks

Given the Layer() construct on the LHS of an ergm() formula, we can use layer-aware terms on the RHS.
By convention, layer-aware terms have capital L appended to them. For example, mutualL is a layer-aware
generalization of mutual. These terms have one or more explicit (usually optional) layer specification
arguments. By convention, an argument that requires one layer specification is named L= and one that
requires a list of specifications (constructed by list() or just c() is named Ls=; and a specification of the
form ~. is a placeholder for all observed layers.

We can get a list of layer-aware terms currently visible to ERGM with

search.ergmTerms(keywords="layer-aware")

Found 10 matching ergm terms:
CMBL(Ls=~.) (binary)

Conway--Maxwell-Binomial dependence among layers

ddspL(d, type="OTP", Ls.path=NULL, L.in_order=FALSE) (binary)
dspL(d, type="OTP", Ls.path=NULL, L.in_order=FALSE) (binary)

Dyadwise shared partners on layers
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despL(d, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)
espL(d, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)

Edgewise shared partners on layers

dgwdspL(decay, fixed=FALSE, cutoff=30, type="OTP", Ls.path=NULL, L.in_order=FALSE) (binary)
gwdspL(decay, fixed=FALSE, cutoff=30, type="OTP", Ls.path=NULL, L.in_order=FALSE) (binary)

Geometrically weighted dyadwise shared partner distribution on layers

dgwespL(decay, fixed=FALSE, cutoff=30, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)
gwespL(decay, fixed=FALSE, cutoff=30, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)

Geometrically weighted edgewise shared partner distribution on layers

dgwnspL(decay, fixed=FALSE, cutoff=30, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)
gwnspL(decay, fixed=FALSE, cutoff=30, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)

Geometrically weighted non-edgewise shared partner distribution on layers

dnspL(d, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)
nspL(d, type="OTP", L.base=NULL, Ls.path=NULL, L.in_order=FALSE) (binary)

Non-edgewise shared partners and paths on layers

L(formula, Ls=~.) (binary)
Evaluation on layers

mutualL(same=NULL, diff=FALSE, by=NULL, keep=NULL, Ls=NULL) (binary)
Mutuality

twostarL(Ls, type, distinct=TRUE) (binary)
Multilayer two-star

Layer Logic But how do we specify layers?

Layer Logic is an approach to specifying layers, their transformations, and interactions between two or more
layers by constructing logical layers, which are layers constructed by evaluating logical expressions on observed
layers.

Each formula’s right-hand side describes an observed layer or some “logical” layer, whose ties are a function
of corresponding ties in observed layers. (Krivitsky et al. 2020)

The observed layers can be referenced either by name or by number (i.e., order in which they were passed to
Layer). When referencing by number, enclose the number in quotation marks (e.g., "1") or backticks (e.g.,
1).

Standard arithmetical, comparison, and logical operations can be used, as well as as some mathematical
functions such as abs(), round(), and sign(). Standard operator precedence is followed applies, so use of
parentheses is recommended to ensure the logical expression is what it looks like.

For example, if LHS is Layer(A=nwA, B=nwB), both ~‘2‘ and ~B refer to nwB, while A&!B refers to a logical
layer that has ties that are in nwA but not in nwB.

Transpose function t() applied to a directed layer will reverse the direction of all relations (transposing
the sociomatrix). Unlike the others, it can only be used on an observed layer directly. For example,
~t(‘1‘)&t(‘2‘) is valid but ~t(‘1‘&‘2‘) is not.

At this time, logical expressions that produce complete graphs from empty graph inputs (e.g., A==B or !A)
are not supported.

44



The L(formula, Ls) operator This is probably the most frequently used layer-aware term: it takes an
arbitrary binary ergm formula and evaluates it on each observed or logical layer specified in Ls, and then adds
up the results elementwise. A very common usage is to write L(~[TERMS], ~.) to fit an effect of [TERMS]
homogeneous over all layers.

summary(LLazega~L(~edges, ~f))

L(f)~edges
575

summary(L.f~edges)

edges
575

summary(LLazega~L(~edges, c(~f, ~a)))

L((f,a))~edges
1467

summary(L.f~edges) + summary(L.a~edges)

edges
1467

summary(LLazega~L(~edges, ~.))

L(.)~edges
2571

summary(L.f~edges) + summary(L.c~edges) + summary(L.a~edges)

edges
2571

summary(LLazega~L(~edges, ~f|a))

L(f|a)~edges
1109

summary((L.f|L.a)~edges)

edges
1109

However, note that while the statistics are the same, the MLEs are different:
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ergm(Layer(f=L.f, a=L.a)~L(~edges, ~f|a))

Call:
ergm(formula = Layer(f = L.f, a = L.a) ~ L(~edges, ~f | a))

Monte Carlo Maximum Likelihood Coefficients:
L(f|a)~edges

-2.334

ergm((L.f|L.a)~edges)

Call:
ergm(formula = (L.f | L.a) ~ edges)

Maximum Likelihood Coefficients:
edges

-1.247

This is because the sample space for the first one is all-possible two-layer networks, whereas the sample space
for the second one is all possible one-layer networks. Thus, the normalizing constant is different.

Modelling association between layers

• CMBL(Ls): Conway–Maxwell-binomial distribution: By “default”, if m layers in Ls are homoge-
neous, the number of the layers with an edge should be Binomial(m, p) where p is the density of each
layer. CMB replaces the “

(
m

yi,j

)
” in the binomial density with “

(
m

yi,j

)θCMB ”: a positive coefficient implies
positive dependence and a negative one induces negative dependence.

Is there an overall positive association between nominations?

summary(ergm(LLazega~L(~edges, ~.) + CMBL(~.)))

Call:
ergm(formula = LLazega ~ L(~edges, ~.) + CMBL(~.))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L(.)~edges -0.82857 0.01886 0 -43.93 <1e-04 ***
CMBL(~.) 1.41771 0.03551 0 39.92 <1e-04 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 20670 on 14910 degrees of freedom
Residual Deviance: 12290 on 14908 degrees of freedom

AIC: 12294 BIC: 12309 (Smaller is better. MC Std. Err. = 4.034)
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Yes!

What if we focus on giving advice rather than receiving?

summary(ergm(LLazega~L(~edges, c(~t(a),~c,~f)) + CMBL(c(~t(a),~c,~f))))

Call:
ergm(formula = LLazega ~ L(~edges, c(~t(a), ~c, ~f)) + CMBL(c(~t(a),

~c, ~f)))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L((t(a),c,f))~edges -0.89864 0.02262 0 -39.73 <1e-04 ***
CMBL(list(~t(a),~c,~f)) 1.21693 0.03420 0 35.58 <1e-04 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 20670 on 14910 degrees of freedom
Residual Deviance: 12730 on 14908 degrees of freedom

AIC: 12734 BIC: 12749 (Smaller is better. MC Std. Err. = 3.465)

Still yes.

Direct layer logic effects Consider a two-layer model for a dyad (i, j),

Pr(Yi,j,A = yi,j,A ∧ Yi,j,B = yi,j,B) ∝ exp(θ1yi,j,A + θ2yi,j,B + θ3yi,j,A□B),

for some logical operation □.

What happens if we fix yi,j,B and look at the conditional probability of Pr(Yi,j,A = 1)?

• a&b: Conjunction: logit−1(θ1 + θ3yi,j,B), so θ3 > 0 =⇒ presence of an edge in layer b will increase
the probability of the edge in layer a.

• xor(a,b): Mutual exclusivity: logit−1(θ1 + θ3(−1)yi,j,B ), so θ3 > 0 =⇒ presence of an edge in
layer b will decrease the probability of the edge in layer a.

• a|b: Substitutability: logit−1(θ1 + θ3(1 − yi,j,B)), so θ3 > 0 =⇒ presence of an edge in layer b will
undo a “default” increase in the probability of the edge in layer a.

summary(ergm(Layer(a=L.a,c=L.c)~L(~edges, ~a) + L(~edges, ~c) + L(~edges, ~a&c)))

Call:
ergm(formula = Layer(a = L.a, c = L.c) ~ L(~edges, ~a) + L(~edges,

~c) + L(~edges, ~a & c))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L(a)~edges -2.44007 0.05835 0 -41.82 <1e-04 ***
L(c)~edges -1.91846 0.04548 0 -42.18 <1e-04 ***
L(a&c)~edges 2.54759 0.08407 0 30.30 <1e-04 ***
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 13780 on 9940 degrees of freedom
Residual Deviance: 8947 on 9937 degrees of freedom

AIC: 8953 BIC: 8974 (Smaller is better. MC Std. Err. = 2.647)

summary(ergm(Layer(a=L.a,c=L.c)~L(~edges, ~a) + L(~edges, ~c) + L(~edges, ~xor(a,c))))

Call:
ergm(formula = Layer(a = L.a, c = L.c) ~ L(~edges, ~a) + L(~edges,

~c) + L(~edges, ~xor(a, c)))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L(a)~edges -1.16512 0.04365 0 -26.69 <1e-04 ***
L(c)~edges -0.64534 0.04214 0 -15.31 <1e-04 ***
L(xor(a,c))~edges -1.27366 0.04214 0 -30.23 <1e-04 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 13780 on 9940 degrees of freedom
Residual Deviance: 8948 on 9937 degrees of freedom

AIC: 8954 BIC: 8976 (Smaller is better. MC Std. Err. = 3.341)

summary(ergm(Layer(a=L.a,c=L.c)~L(~edges, ~a) + L(~edges, ~c) + L(~edges, ~a|c)))

Call:
ergm(formula = Layer(a = L.a, c = L.c) ~ L(~edges, ~a) + L(~edges,

~c) + L(~edges, ~a | c))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L(a)~edges 0.10982 0.06212 0 1.768 0.0771 .
L(c)~edges 0.63121 0.07033 0 8.975 <1e-04 ***
L(a|c)~edges -2.54825 0.08373 0 -30.434 <1e-04 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 13780 on 9940 degrees of freedom
Residual Deviance: 8950 on 9937 degrees of freedom

AIC: 8956 BIC: 8977 (Smaller is better. MC Std. Err. = 4.095)

Cross-layer reciprocity

• mutualL(Ls): Layer-aware mutuality: Given Ls=c(~a, ~b), counts the number of ordered pairs
(i, j) for which yi,j,A = 1 ∧ yj,i,B = 1.
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• L(~..., ~a&t(b)): Reversal layer logic: Another way of expressing the above.

Net of within-layer density and mutuality and co-occurrence, does advice reciprocate coworking?

summary(ergm(Layer(a=L.a,c=L.c)~L(~edges + mutual, ~a) + L(~edges + mutual, ~c) +
L(~edges, ~a&c) + mutualL(Ls=c(~a,~c))))

Call:
ergm(formula = Layer(a = L.a, c = L.c) ~ L(~edges + mutual, ~a) +

L(~edges + mutual, ~c) + L(~edges, ~a & c) + mutualL(Ls = c(~a,
~c)))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
L(a)~edges -2.56067 0.06207 0 -41.253 <1e-04 ***
L(a)~mutual 0.34529 0.15327 0 2.253 0.0243 *
L(c)~edges -2.80100 0.06540 0 -42.829 <1e-04 ***
L(c)~mutual 2.54073 0.14194 0 17.900 <1e-04 ***
L(a&c)~edges 2.07274 0.10495 0 19.750 <1e-04 ***
L(a,c)~mutual 0.65084 0.12313 0 5.286 <1e-04 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 13780 on 9940 degrees of freedom
Residual Deviance: 8113 on 9934 degrees of freedom

AIC: 8125 BIC: 8168 (Smaller is better. MC Std. Err. = 3.391)

It appears so.

Equivalently, we can write:

summary(ergm(Layer(a=L.a,c=L.c)~L(~edges + mutual, ~a) + L(~edges + mutual, ~c) +
L(~edges, ~a&c) + L(~edges, ~a&t(c))))

Multilayer paths

• twostarL(Ls, type, distinct): Cross-layer two-star or two-path: Ls is a list of two layers of
interest (e.g., list(~a,~b)), and type is

– "any" Undirected: instances where node i has an edge in layer a and an edge in layer b. (Whether
these edges may be coincident depends on distinct.)

– "out"/"in" Directed: instances where node i has out-edge/in-edge in a and out-edge/in-edge in
b. (Whether these edges may be coincident depends on distinct.)

– "path" Directed: instances where i has in-edge in a and an out-edge in b. (Whether these edges
may be reciprocal depends on distinct.)

For illustration purposes, I will set distinct=FALSE. In your case, it should be driven by substantive or
theoretical considerations.
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summary(LLazega~twostarL(c(~c,~f), type="out", distinct=FALSE))

twostarL(c<>f)
10563

# Equivalently...
sum(

rowSums(as.matrix(L.c)) # Outdegree of each node in layer c
*
rowSums(as.matrix(L.f)) # Outdegree of each node in layer f

)

[1] 10563

summary(LLazega~twostarL(c(~c,~f), type="in", distinct=FALSE))

twostarL(c><f)
10118

# Equivalently...
sum(

colSums(as.matrix(L.c)) # Indegree of each node in layer c
*
colSums(as.matrix(L.f)) # Indegree of each node in layer f

)

[1] 10118

summary(LLazega~twostarL(c(~c,~f), type="path", distinct=FALSE))

twostarL(c>>f)
9890

# Equivalently...
sum(

colSums(as.matrix(L.c)) # Indegree of each node in layer c
*
rowSums(as.matrix(L.f)) # Outdegree of each node in layer f

)

[1] 9890

Multilayer triadic effects Triadic effects are generalized by gwdspL, gwespL, and gwnspL which take
the standard arguments of gw*sp and dgw*sp effects, incluidng type, and, in addition, L.base, Ls.path,
and L.in_order, specifying the layer of the base (for gwespL and gwnspL), the layer of the two-path, and
whether, for the directed case, the order of the two-path matters.
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Figure 1: Taxonomy of cross-layer triadic structures. Reproduced from Krivitsky et al. (2020).
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