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1 Getting the software

If you have not already done so, please make sure that you have a reasonably
new version of R, preferably the latest (3.0.0). Then, download and install
the latest versions of the statnet packages. You will specifically need to have
version 3.1-0 of the packages ergm, tergm and statnet.common, as well as
network version 1.7.2 and networkDynamic version 0.4 or later. You can
get all of them with the syntax:

> install.packages("statnet")

> library(statnet)

2 A quick review of static ERGMs

Exponential-family random graph models (ERGMs) represent a general class
of models based in exponential-family theory for specifying the probability
distribution underlying a set of random graphs or networks. Within this
framework, one can—among other tasks—obtain maximum-likehood esti-
mates for the parameters of a specified model for a given data set; simulate
additional networks with the underlying probability distribution implied by
that model; test individual models for goodness-of-fit, and perform various
types of model comparison.

The basic expression for the ERGM class can be written as:

P (Y = y) =
exp(θ′g(y))

k(y)
(1)

where Y is the random variable for the state of the network (with realiza-
tion y), g(y) is the vector of model statistics for network y, θ is the vector
of coefficients for those statistics, and k(y) represents the quantity in the
numerator summed over all possible networks (typically constrained to be
all networks with the same node set as y).

This can be re-expressed in terms of the conditional log-odds of a single
actor pair:

logit (Yij = 1|ycij) = θ′δ(yij) (2)

where Yij is the random variable for the state of the actor pair i, j (with
realization yij), and ycij signifies the complement of yij , i.e. all dyads in the
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network other than yij . The variable δ(yij) equals g(y+ij)− g(y−ij), where y+ij
is defined as ycij along with yij set to 1, and y−ij is defined as ycij along with
yij set to 0. That is, δ(yij) equals the value of g(y) when yij = 1 minus
the value of g(y) when yij = 0, but all other dyads are as in g(y). This
emphasizes the log-odds of an individual tie conditional on all others. We
call g(y) the statistics of the model, and δ(yij) the “change statistics” for
actor pair yij .

Fitting an ERGM usually begins with obtaining data:

> library(tergm)

> data("florentine")

> ls()

[1] "flobusiness" "flomarriage"

> plot(flobusiness)

To refresh our memories on ERGM syntax, let us fit a cross-sectional
example. Just by looking at the plot of flobusiness, we might guess that
there are more triangles than expected by chance for a network of this size
and density, and thus that there is some sort of explicit triangle closure
effect going on. One useful way to model this effect in ERGMs that has
been explored in the literature is with a gwesp statistic.
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> fit1 <- ergm(flobusiness~edges+gwesp(0,fixed=T))

Iteration 1 of at most 20:

Convergence test P-value: 1.6e-253

The log-likelihood improved by 0.07054

Iteration 2 of at most 20:

Convergence test P-value: 5e-45

The log-likelihood improved by 0.01656

Iteration 3 of at most 20:

Convergence test P-value: 3.9e-06

The log-likelihood improved by 0.002125

Iteration 4 of at most 20:

Convergence test P-value: 3.5e-04

The log-likelihood improved by 0.001339

Iteration 5 of at most 20:

Convergence test P-value: 7.1e-01

Convergence detected. Stopping.

The log-likelihood improved by < 0.0001

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

> summary(fit1)

==========================

Summary of model fit

==========================

Formula: flobusiness ~ edges + gwesp(0, fixed = T)

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.3674 0.6128 0 < 1e-04 ***

gwesp.fixed.0 1.5646 0.5810 0 0.00812 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 166.36 on 120 degrees of freedom

Residual Deviance: 78.21 on 118 degrees of freedom
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AIC: 82.21 BIC: 87.79 (Smaller is better.)

With the estimation in place, we can simulate a new network from the
given model:

> sim1 <- simulate(fit1,nsim=1,

control=control.simulate.ergm(MCMC.burnin=1000))

> plot(sim1)

3 An Introduction to STERGMs (non-technical)

Separable Temporal ERGMs (STERGMs) are an extension of ERGMs for
modeling dynamic networks in discrete time, introduced in Krivitsky and
Handcock (2010). The cross-sectional ERGM entails a single network, and
a single model on that network. STERGMs, in contrast, posit two models:
one ERGM underlying relational formation, and a second one underlying re-
lational dissolution. Specifying a STERGM thus entails writing two ERGM
formulas instead of one. It also requires dynamic data, of course; such data
can come in many forms, and we will cover a few examples today.
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This approach is not simply a methodological development, but a the-
oretical one as well, and one which matches common sense for many social
processes. Think of romantic relations. It seems intuitive that the sta-
tistical model underlying relational formation (i.e. affecting who becomes
partners with whom, out of the set of people who aren’t already) is likely to
be different than the model underlying relational dissolution (i.e. affecting
who breaks up with whom, out of the set of people currently in relation-
ships). Any reasonable model of the former would need to include a variety
of homophily parameters (mixing on age, for example). The latter may or
may not. (Conditional on being in a relationship, does your difference in
age affect your probability of breaking up? Perhaps, but probably not as
fundametally or as strongly as for formation).

4 An Introduction to STERGMs (a bit more tech-
nical)

We first review the ERGM framework for cross-sectional or static networks,
observed at a single point in time. Let Y ⊆ {1, . . . , n}2 be the set of po-
tential relations (dyads) among n nodes, ordered for directed networks and
unordered for undirected. We can represent a network y as a set of ties,
with the set of possible sets of ties, Y ⊆ 2Y, being the sample space: y ∈ Y.
Let yij be 1 if (i, j) ∈ y — a relation of interest exists from i to j — and 0
otherwise.

The network also has an associated covariate array X containing at-
tributes of the nodes, the dyads, or both. An exponential-family random
graph model (ERGM) represents the pmf of Y as a function of a p-vector
of network statistics g(Y,X), with parameters θ ∈ Rp, as follows:

Pr (Y = y | X) =
exp {θ · g(y,X)}

k(θ,X,Y)
, (3)

where the normalizing constant

k(θ,X,Y) =
∑
y′∈Y

exp
{
θ · g(y′,X)

}
is a summation over the space of possible networks on n nodes, Y. Where
Y and X are held constant, as in a typical cross-sectional model, they may
be suppressed in the notation. Here, on the other hand, the dependence on
Y and X is made explicit.
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In modeling the transition from a network Yt at time t to a network Yt+1

at time t + 1, the separable temporal ERGM assumes that the formation
and dissolution of ties occur independently from each other within each time
step, with each half of the process modeled as an ERGM. For two networks
(sets of ties) y,y′ ∈ Y, let y ⊇ y′ if any tie present in y′ is also present in
y. Define Y+(y) = {y′ ∈ Y : y′ ⊇ y}, the networks that can be constructed
by forming ties in y; and Y−(y) = {y′ ∈ Y : y′ ⊆ y}, the networks that can
be constructed dissolving ties in y.

Given yt, a formation network Y+ is generated from an ERGM con-
trolled by a p-vector of formation parameters θ+ and formation statistics
g+(y+,X), conditional on only adding ties:

Pr
(
Y+ = y+ | Yt; θ+

)
=

exp {θ+ · g+(y+,X)}
k (θ+,X,Y+(Yt))

, y+ ∈ Y+(yt). (4)

A dissolution network Y− is simultaneously generated from an ERGM con-
trolled by a (possibly different) q-vector of dissolution parameters θ− and
corresponding statistics g−(y−,X), conditional on only dissolving ties from
yt:

Pr
(
Y− = y− | Yt; θ−

)
=

exp {θ− · g−(y−,X)}
k (θ−,X,Y−(Yt))

, y− ∈ Y−(yt). (5)

The cross-sectional network at time t + 1 is then constructed by applying
the changes in Y+ and Y− to yt:

Yt+1 = Yt ∪ (Y+ −Yt) − (Yt −Y−).

which simplifies to either:

Yt+1 = Y+ − (Yt −Y−)

Yt+1 = Y− ∪ (Y+ −Yt)

Visually, we can sum this up as:

5 Notes on model specification and syntax

Within statnet, an ERGM involves one network and one set of network
statistics, so these are specified together using R’s formula notation:

my.network ∼ my.vector.of.model.terms
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For a call to stergm, there is still one network, but two formulas. These
are now passed as three separate arguments: the network (argument nw),
the formation formula (argument formation), and the dissolution formula
(argument dissolution). The latter two both take the form of a one-sided
formula. E.g.:

stergm(my.network,

formation= ~edges+kstar(2),

dissolution= ~edges+triangle

)

There are other features of a call to either ergm or stergm that will be
important for us here. We list the features here; each will be illustrated in
one or more examples during the workshop.

1. To fix the coefficient for a particular network statistic, one uses offset
notation. For instance, to fix a dissolution model with only an edges
term with parameter value 4.2, the dissolution formula woud be:

dissolution= ∼offset(edges)

and the corresponding argument for passing the parameter value would
be:

offset.coef.diss = 4.2

2. In parallel with ergm, any information used to specify the nature of the
fitting algorithm is passed by specifying a vector called control.stergm

to the control argument. For example:
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control=control.stergm(MCMC.burnin=10000)

For a list of options, type ?control.stergm

3. Another argument that the user must supply is estimate, which con-
trols the estimation method. Unlike with cross-sectional ERGMs,
there is not necessarily an obvious default here, as different scenar-
ios are best fit with different approaches. The most important for the
new user to recognize are EGMME (equilibrium generalized method of
moments estimation) and CMLE (conditional maximum likelihood esti-
mation). A good rule of thumb is that when fitting to two (or more)
networks (i.e. with panel data), one should use estimate="CMLE"; and
when fitting to a single cross-section with some duration information,
use estimate="EGMME".

6 Example 1: Multiple network cross-sections

One common form of data for modeling dynamic network processes consists
of observations of network structure at two or more points in time on the
same node set. Many classic network studies were of this type, and data of
this form continue to be collected and analyzed.

Let us consider the famous Sampson monastery data:

> data(samplk)

> ls()

[1] "fit1" "flobusiness" "flomarriage" "samplk1"

[5] "samplk2" "samplk3" "sim1"

To pass them into stergm, we need to combine them into a list:

> samp <- list()

> samp[[1]] <- samplk1

> samp[[2]] <- samplk2

> samp[[3]] <- samplk3

Now we must decide on a model to fit to them. Plotting one network:

> plot(samplk1)
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we might get the idea to consider mutuality as a predictor of a directed edge.
Also, since this is a directed network, and there appear to be a considerable
number of triadic relations, it might be worth investigating the role of cyclic-
ity vs. transitivity in the network. Although there are a number of ways
to model this latter question, we will select the relatively robust measures
“transitiveties” and “cyclicalties” (the number of ties i->j that have at least
one two-path from i->j and from j->i, respectively). Since we have multiple
network snapshots, and we have separate formation and dissolution mod-
els, we can estimate the degree to which closing a mutual dyad or closing
a triangle of each type predicts the creation of a tie, and also estimate the
degree to which maintaining a mutual dyad or maintaining a triad of each
type predicts the persistence of an existing tie. We might see different phe-
nomena at work in each case; or the same phenomena, but with different
coefficients.

In the following code, we pass five arguments: the series of networks that
we want to model (samp), the formation formula, the dissolution formula,
the fitting algorithm (in this case, conditional MLE is best since we have
a network time series), and the list of time slices we wish to model (which
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includes all in the passed network series by default):

> samp.fit <- stergm(samp,

formation= ~edges+mutual+cyclicalties+transitiveties,

dissolution = ~edges+mutual+cyclicalties+transitiveties,

estimate = "CMLE",

times=1:3

)

Fitting formation:

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
This model was fit using MCMC. To examine model diagnostics and

check for degeneracy, use the mcmc.diagnostics() function.

And the results:

> summary(samp.fit)

==============================

Summary of formation model fit

==============================

Formula: ~edges + mutual + cyclicalties + transitiveties

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.4696 0.3351 0 <1e-04 ***

mutual 2.0464 0.4105 0 <1e-04 ***

cyclicalties -0.1365 0.2013 0 0.4981

transitiveties 0.3927 0.2357 0 0.0963 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 693.1 on 500 degrees of freedom

Residual Deviance: 239.9 on 496 degrees of freedom

AIC: 247.9 BIC: 264.8 (Smaller is better.)
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================================

Summary of dissolution model fit

================================

Formula: ~edges + mutual + cyclicalties + transitiveties

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges 0.2083 0.3022 0 0.4920

mutual 0.7955 0.5166 0 0.1265

cyclicalties -0.1893 0.2502 0 0.4509

transitiveties 0.5028 0.2834 0 0.0788 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 155.3 on 112 degrees of freedom

Residual Deviance: 136.6 on 108 degrees of freedom

AIC: 144.6 BIC: 155.5 (Smaller is better.)

So, all else being equal, a relationship is much more likely to form if it
will close a mutual pair. The effect on persistence is also positive, but less
strong and clear. Transitivity may also matter, perhaps slightly more so in
terms of dissolution than formation.

If one wishes to include only a subset of times from one’s network series,
one can alter the times argument:

> samp.fit.2 <- stergm(samp,

formation= ~edges+mutual+cyclicalties+transitiveties,

dissolution = ~edges+mutual+cyclicalties+transitiveties,

estimate = "CMLE",

times=1:2

)

How do these coefficients compare?
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7 Example 2: One network cross section and du-
rational information

Now, let us imagine a different scenario in which we have observed two types
of data: a single cross-sectional network, and a mean relational duration. Let
us say the cross-sectional network is flobusiness, and the mean relational
duration we have witnessed is 10 time steps. Furthermore, we are willing
(for reasons of theory or convenience) to assume a purely homogeneous dis-
solution process (that is, every existing relationship has the same probability
of dissolving as all others, and at all times). For a cross-sectional ERGM, a
purely homogeneous model is one with just a single term in it for an edge
count. The same is true for either of the two formulas in a STERGM.

The steps we will go through are:

1. Specify formation and dissolution models (formation and dissolution).

We will begin by assuming a formation model identical to the model
we fit in the cross-sectional case:

formation = ∼edges+gwesp(0,fixed=T)

Analogously to cross-sectional ERGMs, our assumption of completely
homogeneous dissolution corresponds to a model with only an edge-
count term in it. In STERGM notation this is:

dissolution = ∼edges

which correspond to the probability statement:

ln
P (Yij,t+1 = 1 | Yij,t = 1)

P (Yij,t+1 = 0 | Yij,t = 1)
= θ ∗ δ(y) (6)

where the one term in the δ(y) vector is the edge count of the network.

2. Calculate theta.diss.

Our dissolution model is applied to the set of ties that exist at any
given time point, as reflected in the conditional present in both the
numerator and denominator of Equation (8). The numerator thus
represents the case where a tie persists to the next step, and the deno-
miator represents the case where it dissolves. Furthermore, δ(yij) = 1
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for all i, j for the case of the edge count statistic. We define the prob-
ability of persistance from one time step to the next for actor pair i, j
as pij , and the probability of dissolution as qij = 1− pij . Our dissolu-
tion model is Bernoulli; that is, all edges have the same probability of
dissolution, and thus of persistence, so we further define pij = p∀i, j
and qij = q∀i, j. Then:

ln (
pij

1− pij
) = θ ∗ δ(yij)

ln (
p

1− p
) = θ

ln (
1− q
q

) = θ

ln (
1

q
− 1) = θ

And because this is a discrete memoryless process, durations are geo-
metric; symbolizing mean relational duration as d, we have d = 1

q , and
thus:

θ = ln (d− 1) (7)

So, for our dissolution model, theta.diss = ln (10− 1) = ln 9 = 2.197:

> theta.diss <- log(9)

In short, because our dissolution model is dyadic independent, we can
calculate it using a (rather simple) closed form solution.

3. Decide upon our targets. For cross-sectional ERGMs, the model is by
default fit using the sufficient statistics present in the cross-sectional
network. For the STERGM with two cross-sections that we fit above,
we also wanted to use the sufficient statistics present in the two ob-
served networks. In the case of one cross-section but a formation
and dissolution model, the reasonable default is less clear. Thus, the
user is required to supply this information via the targets argument.
This can take a one-sided formula listing the terms to be fit; or, if
the formula is identical to either the formation or dissolution model,
the user can simply pass the string "formation" or "dissolution",
respectively. If one is specifying targets="formation", dissolution
should be an offset, and vice versa. If the values to be targeted for
those terms are anything other than the sufficient statistics present in
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the cross-sectional network, then those values can be passed with the
argument target.stats. In this case, we want to use the sufficient
statistics present in the cross-sectional network for the model terms in
the formation model.

4. Estimate the formation model, conditional on the dissolution model.
We put it all together for our first call to stergm, adding in one addi-
tional control argument that helps immensely with monitoring model
convergence (and is just plain cool): plotting the progress of the co-
efficient estimates and the simulated sufficient statistics in real time.
When one is using a GUI tool like RStudio, it helps to output this
plotting to a separate window, which we do below with the function
X11 (and then turn off that window again with dev.off()):

> X11()

> stergm.fit.1 <- stergm(flobusiness,

formation= ~edges+gwesp(0,fixed=T),

dissolution = ~offset(edges),

targets="formation",

offset.coef.diss = theta.diss,

estimate = "EGMME",

control=control.stergm(SA.plot.progress=TRUE)

)

> dev.off()

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
== Phase 3: Simulate from the fit and estimate standard errors.==

First, we should double-check to make sure the fitting went well:

> mcmc.diagnostics(stergm.fit.1)

==========================

EGMME diagnostics

==========================

⇒ Lots of output snipped. ⇐

Since those look good, we can next query the object in a variety of
ways to see what we have:
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> stergm.fit.1

Formation Coefficients:

edges gwesp.fixed.0

-6.540 2.358

Dissolution Coefficients:

edges

2.197

> names(stergm.fit.1)

[1] "network" "formation" "dissolution"

[4] "targets" "target.stats" "estimate"

[7] "covar" "opt.history" "sample"

[10] "sample.obs" "control" "reference"

[13] "mc.se" "constraints" "formation.fit"

[16] "dissolution.fit"

> stergm.fit.1$formation

~edges + gwesp(0, fixed = T)

> stergm.fit.1$formation.fit
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EGMME Coefficients:

edges gwesp.fixed.0

-6.540 2.358

> summary(stergm.fit.1)

==============================

Summary of formation model fit

==============================

Formula: ~edges + gwesp(0, fixed = T)

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges -6.5396 1.1178 0 < 1e-04 ***

gwesp.fixed.0 2.3582 0.8378 0 0.00572 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

================================

Summary of dissolution model fit

================================

Formula: ~offset(edges)

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges 2.197 NA NA NA

The following terms are fixed by offset and are not estimated:

edges

We have now obtained estimates for the coefficients of a formation model
that, conditional on the stated dissolution model, yields simulated targets
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that matched those observed. Something very useful we have also gained
in the process is the ability to simulate networks with the desired cross-
sectional structure and mean relational duration. This ability serves us well
for any application areas that requires us to simulate phenomena on dynamic
networks, whether they entail the diffusion of information or disease, or some
other process.

> stergm.sim.1 <- simulate.stergm(stergm.fit.1, nsim=1,

time.slices = 1000)

Understanding this object requires us to learn about an additional piece
of statnet functionality: the networkDynamic package.

8 networkDynamic

In statnet, cross-sectional networks are stored using objects of class network.
Tools to create, edit, and query network objects are in the package network.
Dynamic networks are now stored as objects with two classes (network and
networkDynamic). They can thus be edited or queried using standard func-
tions from the network package, or using additional functions tailored specif-
ically to the case of dynamic networks in the package networkDynamic.

To illustrate, let us begin with the network that we just created:

> stergm.sim.1

NetworkDynamic properties:

distinct change times: 946

maximal time range: -Inf to Inf

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 120

missing edges= 0

non-missing edges= 120
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Vertex attribute names:

priorates totalties vertex.names wealth

We can deduce from the number of edges that this likely represents the
cumulative network—that is, the union of all edges that exist at any point
in time over the course of the simulation. What does the network look like
at different time points? The function network.extract allows us to pull
out the network at an instantanoues time point (with the argument at), or
over any given spell (with the arguments onset and terminus).

> net429 <- network.extract(stergm.sim.1,at=429)

> net429

NetworkDynamic properties:

distinct change times: 473

maximal time range: -Inf to Inf

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 26

missing edges= 0

non-missing edges= 26

Vertex attribute names:

priorates totalties vertex.names wealth

For any one of these time points, we can look at the network structure:

> plot(network.extract(stergm.sim.1,at=882))

How well do the cross-sectional networks within our simulated dynamic
network fit the probability distribution implied by our model? We can check
by considering the summary statistics for our observed network, and those
for our cross-sectional networks.

> summary(flobusiness~edges+gwesp(0,fixed=T))

19



edges gwesp.fixed.0

15 12

> colMeans(attributes(stergm.sim.1)$stats)

edges gwesp.fixed.0

15.976 12.909

And we can also easily look at a time series and histogram for each
statistic:

> plot(attributes(stergm.sim.1)$stats)

Or even at a scatter plot of the two network statistics for each simulated
network cross-section, to see how these co-vary for this model:

> plot(as.matrix(attributes(stergm.sim.1)$stats))

We should also check to make sure that our mean duration is what
we expect (10 time steps). This requires knowing an additional function:
as.data.frame, which, when applied to an object of class networkDynamic,
generates a timed edgelist. Although right-censoring is present for some
edges in our simulation, with a mean duration of 10 time steps and a simu-
lation 1000 time steps long, its effect on our observed mean duration should
be trivial.
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> stergm.sim.1.dm <- as.data.frame(stergm.sim.1)

> names(stergm.sim.1.dm)

[1] "onset" "terminus"

[3] "tail" "head"

[5] "onset.censored" "terminus.censored"

[7] "duration" "edge.id"

> mean(stergm.sim.1.dm$duration)

[1] 9.853794

The information on when an edge is active and when it is inactive is
stored within our network object as the edge attribute active. Vertices,
too, are capable of becoming active and inactive within networkDynamic,
and this information is stored as a vertex attribute. Most of the time, users
should access this information indirectly, through functions like network.extract
or as.data.frame. Additional functions to query or set activity include
is.active, activate.vertex, deactivate.vertex, activate.edge, and
deactivate.edge, all documented in help(package="networkDynamic").

For those who want to look under the hood, they can see the activity
spells directly. For a single edge, say, edge number 25, use:
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> get.edge.activity(stergm.sim.1, 25)

[[1]]

[,1] [,2]

[1,] 9 10

[2,] 221 225

[3,] 227 253

[4,] 342 343

[5,] 444 458

[6,] 474 483

[7,] 546 575

[8,] 628 638

or, with more info:

> get.edge.activity(stergm.sim.1, 25, as.spellList=T)

onset terminus tail head onset.censored

354 9 10 3 10 FALSE

355 221 225 3 10 FALSE

356 227 253 3 10 FALSE

357 342 343 3 10 FALSE
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358 444 458 3 10 FALSE

359 474 483 3 10 FALSE

360 546 575 3 10 FALSE

361 628 638 3 10 FALSE

terminus.censored duration edge.id

354 FALSE 1 25

355 FALSE 4 25

356 FALSE 26 25

357 FALSE 1 25

358 FALSE 14 25

359 FALSE 9 25

360 FALSE 29 25

361 FALSE 10 25

Note that networkDynamic stores spells in the form [onset,terminus),
meaning that the spell is inclusive of the onset and exclusive of the termi-
nus. So a spell of 3,7 means the edge begins at time point 3 and ends just
before time point 7. networkDynamic can handle continuous-time spell in-
formation. However, since STERGMs are discrete-time with integer steps,
what this means for STERGM is that the edge is inactive up through time
step 2; active at time steps 3, 4, 5, and 6; and inactive again at time step 7
and on. Its duration is thus 4 time steps.

9 Showing off your dynamic network with ndtv

We can visualize the simulated dynamic network stergm.sim.1 using the
ndtv package, which animates the transitions between each time step of the
network. Install and load the package:

> install.packages(’ndtv’,repos="http://statnet.csde.washington.edu")

> library(ndtv)

Setup instructions for the ndtv package can be found in the ndtv vi-
gnette.

Some of the parameters for rendering the animation are shown below.
tween.frames specifies the speed of the transition between timesteps (lower
is faster, but more jittery; the default is 10). show.time and show.stats

specify what captions to display along with the plot.

> render.par=list(tween.frames=5,show.time=T,

show.stats="~edges+gwesp(0,fixed=T)")
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You can vary the size and color of both the vertices and edges based on
their attributes. Here, we plot larger vertices for wealthier families.

> wealthsize = log(get.vertex.attribute(flobusiness, "wealth")) * 2/3

The simulation results stergm.sim.1 can be animated using the follow-
ing commands. A graphics window will pop out and show the rendering
progress. The command ani.replay() can be used to replay the animation.

> render.animation(stergm.sim.1,render.par=render.par,

edge.col="darkgray",displaylabels=T,

label.cex=.8,label.col="blue",

vertex.cex=wealthsize)

> x11()

> ani.replay()

The animation is stored in the R environment in a hidden variable; it
can be replayed at any time using the ani.replay function. However, each
time the render.animation function is called, that variable is overridden.
To share the video (on YouTube, for example), the animation can be saved
as an MP4 movie file using the following commands. The codec ffmpeg

must be installed. The size and quality of the movie file can be adjusted
using the ani.width, ani.height, and -b parameters.

> ani.options(ffmpeg=’C:\\ffmpeg\\bin\\ffmpeg.exe’)

> ani.options(outdir=’C:\\statnet\\ndtvdemo’)

> saveVideo(ani.replay(),video.name="stergm.sim.1.mp4",

other.opts="-b 5000k",clean=TRUE,

ani.width=900, ani.height=768)

Time slices and aggregation

We can use the parameter slice.par in the compute.animation function
to do some optional pre-processing of the networkDynamic object before
rendering. start and end lets us animate a time segment of the dynamic
network. Because the animation process may take a long time on larger
networks, it is useful to peek at the layout for a short time segment before
rendering the whole simulation.

For networks that change very slowly, we can set a larger time step size
using parameter interval, and aggregate the edges over that interval using
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aggregate.dur. The rule “any” specifies that an edge that’s active at any
time step during the aggregation interval will show up in the plot.

Most of the time, the interval should be equal to the aggregate.dur.
In the following example of classroom interactions, we kept the time step
interval at 1, but aggregated over 5 time intervals, so that the time slices
overlap and reveal slower structural patterns in the network. Overlapping
the aggregation windows provides a smoothing effect, similar to a moving
average, but the network density will be inaccurately represented. Compare
the version below with the one with default aggregation settings.

> # directly animate a networkDynamic object, defining time slices

> data(McFarland_cls33_10_16_96)

> slice.par<-list(start=0,end=30,interval=1,

aggregate.dur=5,rule="any")

> compute.animation(cls33_10_16_96,

slice.par=slice.par,animation.mode=’MDSJ’)

> cols = rep(’gray’, 20); cols[7] = ’red’

> x11()

> render.animation(cls33_10_16_96, displaylabels=FALSE,

vertex.cex=1.5, vertex.col=cols)

> ani.replay()

10 Independence within and across time steps

STERGMs assume that the formation and dissolution processes are indepe-
dent of each other within the the same time step.

This does not necessarily mean that they will be independent across
time. In fact, for any dyadic dependent model, they will not. To see this
point, think of a romantic relationship example with:

formation = ~edges+degree(2:10)

dissolution = ~edges

with increasingly negative parameters on the degree terms. What this means
is that there is some underlying tendency for relational formation to occur,
which is considerably reduced with each pre-existing tie that the two actors
involved are already in. In other words, there is a strong prohibition against
being in multiple simultaneous romantic relationships. However, dissolution
is fully independent—all existing relationships have the same underlying dis-
solution probability at every time step. (The latter assumption is probably
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unrealistic; in practice, if someone just acquired a second partner, their first
is likely to be at increased risk of dissoving their relation. We ignore this
now for simplicity).

Imagine that Chris and Pat are in a relationship at time t. During the
time period between t and t+1, whether they break up does not depend on
when either of them acquires a new partner, and vice versa. Let us assume
that they do *not* break up during this time. Now, during the time period
between t+1 and t+2, whether or not they break up is dependent on the
state of the network at time t+1, and that depends on whether either of
them they acquired new partners between t and t+1.

The simple implication of this is that in this framework, formation and
dissolution can be dependent, but that dependence occurs in subsequent
time steps, not simultaneously.

Note that a time step here is abritrary, and left to the user to define. One
reason to select a smaller time interval is that it makes this assumption more
justifiable. With a time step of 1 month, then if I start a new relationship
today, the earliest I can break up with my first partner as a direct result of
that new partnership is in one month. If my time step is a day, then it is in 1
day; the latter is likely much more reasonable. The tradeoff is that a shorter
time interval means longer computation time for both model estimation and
simulation, as will be seen below. You will see throughout this talk that
there are multiple positives and negatives to having a short time step and
having a long time step.

At the limit, this can in practice approximate a continuous-time model—
the only issue is computational limitations.

11 Example 3: Approximation with long dura-
tions

For the type of model we saw in Example 2 (with a known dissolution model
that contains a subset of terms from the formation model), it can be shown
that a good set of starting values for the estimation of the formation model
are as follows: (1) fit the terms in the formation model as a static ERGM
on the cross-sectional network; and (2) subtract the values of the dissolution
parameters from the corresponding values in the cross-sectional model. The
result is a vector of parameter values that form a reasonable place to start
the MCMC chain for the estimation of the formation model. This is in fact
exactly what the stergm estimation code does by default for this type of
model.
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When mean relational duration is very long, this approximation is so
good that it may not be necessary to run a STERGM estimation at all.
Especially if your purpose is mainly for simulation, the approximation may
be all you need. This is a very useful finding, since models with long mean
duration are precisely the ones that are the slowest and most difficult to
fit using EGMME. That’s because, with long durations, very few ties will
change between one time step and another, giving the fitting algorithm very
little information on which to perform the estimation.

Of course, in order to be able to take advantage of this method, it is
necessary for the terms in your dissolution model to be a subset of the
terms in your formation model.

To illustrate, let us reconsider Example 2, with a mean relational dura-
tion of 100 time steps.

> theta.diss.100 <- log(99)

First, we treat the formation process as if it were a stand-alone cross-
sectional model, and estimate it using a standard cross-sectional ERGM. We
did, in fact, fit this cross-sectional model earlier:

> summary(fit1)

==========================

Summary of model fit

==========================

Formula: flobusiness ~ edges + gwesp(0, fixed = T)

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -3.3674 0.6128 0 < 1e-04 ***

gwesp.fixed.0 1.5646 0.5810 0 0.00812 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 166.36 on 120 degrees of freedom

Residual Deviance: 78.21 on 118 degrees of freedom

AIC: 82.21 BIC: 87.79 (Smaller is better.)
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> theta.form <- fit1$coef

> theta.form

edges gwesp.fixed.0

-3.367383 1.564649

>

Then, we subtract the values of the dissolution θ from each of the cor-
responding values in the formation model. In this example, the dissolution
model contains only an edges term, so this coefficient should be subtracted
from the starting value for the edges term in the formation model.

> theta.form[1] <- theta.form[1] - theta.diss.100

How well does this approximation do in capturing our desired dynamic
network properties? First, we can simulate from it:

> stergm.sim.2 <- simulate(flobusiness,

formation=~edges+gwesp(0,fixed=T),

dissolution=~edges,

monitor="all",

coef.form=theta.form,

coef.diss=theta.diss.100,

time.slices=10000)

Then check the results in terms of cross-sectional network structure and
mean relational duration?

> summary(flobusiness~edges+gwesp(0,fixed=T))

edges gwesp.fixed.0

15 12

> colMeans(attributes(stergm.sim.2)$stats)

edges gwesp.fixed.0

18.4236 15.2605

> stergm.sim.dm.2 <- as.data.frame(stergm.sim.2)

> mean(stergm.sim.dm.2$duration)

[1] 103.912

> plot(attributes(stergm.sim.2)$stats)
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12 Example 4: Simulation driven by egocentric
data

In many cases, people’s primary interest in using dynamic networks is to
simulate some diffusion process on one or more networks with similar fea-
tures. Increasingly, our knowledge about those features come in the form
of egocentrically sampled data, not from the traditional network census in
a bounded population. Both ergm and stergm have methods for handling
these situations.

For example, imagine that you want to model HIV transmission among
a population of gay men in steady partnerships. 50% of the men are White
and 50% are Black. You collect egocentric partnership data from a random
(ha! ha!) sample of these men. Your data say:

1. There are no significant differences in the distribution of momentary
degree (the number of ongoing partnerships at one point in time) re-
ported by White vs. Black men. The mean is 0.90, and the overall
distribution is:

(a) 36% degree 0

(b) 46% degree 1

(c) 18% degree 2+
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2. 83.3% of relationships are racially homogeneous

We also have data (from these same men, or elsewhere) that tell us that
the mean duration for a racially homogenous relationship is 10 months, while
for a racially mixed one it is 20 months. (Perhaps this is because the social
pressure against cross-race ties makes it such that those who are willing to
enter them are a select group, more committed to their relationships).

Before we model the disease transmission, we need a dynamic network
that possesses each of these features to simulate it on.

Our first step is to create a 500-node undirected network, and assign the
first 250 nodes to race 0 and the second to race 1. The choice of 500 nodes
is arbitary.

> msm.net <- network.initialize(500, directed=F)

> msm.net %v% ’race’ <- c(rep(0,250),rep(1,250))

> msm.net

Network attributes:

vertices = 500

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 0

missing edges= 0

non-missing edges= 0

Vertex attribute names:

race vertex.names

ERGM and STERGM have functionality that allow us to simply state
what the target statistics are that we want to match; we do not actually
need to generate a network that has them. The formation formula and
target statistics that we need are:

> msm.form.formula <- ~edges+nodematch(’race’)+degree(0)+

concurrent

> msm.target.stats <- c(225,187,180,90)

Why don’t we specify degree(1) as well? How did we get those values?
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Now let us turn to dissolution. We are back to the case where we can
solve these explicitly, although this is complicated slightly by the fact that
our dissolution probabilities differ by the race composition of the members.
One dissolution formula for representing this is:

> msm.diss.formula <- ~offset(edges)+offset(nodematch("race"))

These two model statistics means that there will be two model coef-
ficients. Let us call them θ1 and θ2 for the edges and nodematch terms,
respectively. Let us also refer to the change statistics for actor pair i, j for
each of these as δ1(yij) and δ2(yij), respectively.

Thus the log-odds expression for dissolution that we saw earlier would
here be expressed as:

ln
P (Yij,t+1 = 1 | Yij,t = 1)

P (Yij,t+1 = 0 | Yij,t = 1)
= θ1δ1(yij) + θ2δ2(yij) (8)

Note that δ1(yij) would equal 1 for all actor pairs, while δ2(yij) would equal
1 for race homophilous pairs and 0 for others. That means that the log-odds
of tie persistence will equal θ1 for mixed-race couples and θ1 + θ2 for race-
homophilous couples. This suggests that we should be able to calculate θ1
directly, and subsequently calculate θ2.

Following the logic we saw in Example 2, we can see that:

θ1 = ln dmixed − 1 (9)

and therefore θ1 = ln (20− 1) = ln 19 = 2.944.
Furthermore,

θ1 + θ2 = ln dhomoph − 1 (10)

and therefore θ2 = ln (dhomoph − 1)− θ1 = ln (10− 1)− 2.944 = −0.747.
So, we have:

> msm.theta.diss <- c(2.944, -0.747)

We add in one additional control parameter—SA.init.gain—giving it
a small value (the default is 0.1). As the help page for control.stergm

sagely advises, “If the process initially goes crazy beyond recovery, lower
this value.” This slows down estimation, but also makes it more stable.
From trial and error, we know that this model, fit to this relatively large
network, does better with this smaller value.

Putting it all together (including the syntax to control the window for
real-time monitoring) gives us:

31



> set.seed(0)

> X11()

> msm.fit <- stergm(msm.net,

formation= msm.form.formula,

dissolution= msm.diss.formula,

targets="formation",

target.stats= msm.target.stats,

offset.coef.diss = msm.theta.diss,

estimate = "EGMME",

control=control.stergm(SA.plot.progress=TRUE,

SA.init.gain=0.005)

)

> dev.off()

Iteration 1 of at most 20:

⇒ Lots of output snipped. ⇐
======== Phase 3: Simulate from the fit and estimate standard errors.

========

Let’s first check to make sure it fit well:

> mcmc.diagnostics(msm.fit)

⇒ Lots of output snipped. ⇐

and see what the results tell us:

> summary(msm.fit)

==============================

Summary of formation model fit

==============================

Formula: ~edges + nodematch("race") + degree(0) + concurrent

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges -9.96387 0.36493 0 <1e-04 ***

nodematch.race 2.30755 0.19525 0 <1e-04 ***
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degree0 -0.19519 0.08554 0 0.0225 *

concurrent -0.82986 0.11630 0 <1e-04 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

================================

Summary of dissolution model fit

================================

Formula: ~offset(edges) + offset(nodematch("race"))

Iterations: NA

Equilibrium Generalized Method of Moments Results:

Estimate Std. Error MCMC % p-value

edges 2.944 NA NA NA

nodematch.race -0.747 NA NA NA

The following terms are fixed by offset and are not estimated:
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edges nodematch.race

Now, we simulate a dynamic network:

> msm.sim <- simulate(msm.fit,time.slices=1000)

and compare the outputs to what we expect, in terms of cross-sectional
structure:

> colMeans(attributes(msm.sim)$stats)

edges nodematch.race degree0 concurrent

226.287 187.203 179.847 91.017

> msm.target.stats

[1] 225 187 180 90

And relationship length:

> msm.sim.dm <- as.data.frame(msm.sim)

> names(msm.sim.dm)

[1] "onset" "terminus"

[3] "tail" "head"

[5] "onset.censored" "terminus.censored"

[7] "duration" "edge.id"

> msm.sim.dm$race1 <- msm.sim.dm$head>250

> msm.sim.dm$race2 <- msm.sim.dm$tail>250

> msm.sim.dm$homoph <- msm.sim.dm$race1 == msm.sim.dm$race2

> mean(msm.sim.dm$duration[msm.sim.dm$homoph==T])

[1] 9.861967

> mean(msm.sim.dm$duration[msm.sim.dm$homoph==F])

[1] 20.57526

You can also check to see how much this estimate changes when you
exclude the edges that are censored:
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> mean(msm.sim.dm$duration[msm.sim.dm$homoph==T &

msm.sim.dm$onset.censored==F & msm.sim.dm$terminus.censored==F ])

[1] 9.876734

> mean(msm.sim.dm$duration[msm.sim.dm$homoph==F &

msm.sim.dm$onset.censored==F & msm.sim.dm$terminus.censored==F ])

[1] 20.43644

13 Temporally extended attributes

One of the new features in networkDynamic is the ability to track edge or
vertex attributes that change with time. Some examples of these temporally
extended attributes (TEA) are age and disease status. If a network has
TEAs defined, they can be used to control graphic properties of the network
which change over time. The examples below show a disease spreading
through two networks with very different behaviors.

The first dynamic network is a large (10,000 people) simulation of re-
lationships in Botswana. The infection simulation begins with 5 seed in-
fectors, which are designated by the infected attribute with the function
activate.vertex.attribute. At each time step, those who are infected
can be determined with the function get.vertex.attribute.active. For
each infected person, the partners can be found by using get.neighborhood.active.
Each partner who is not already infected has a 20% chance of becoming in-
fected (a very simple model). Again, infection status can be updated using
activate.vertex.attribute.

> load("Bots_10Kobs_fit.Rdata")

> seeds = c(8796,7460,403,1459,6307)

> infectsim = function(dnet, duration, seeds=NULL, infection.prob=0.2) {

if (is.null(seeds)) seeds = sample(1:network.size(dnet), 5)

activate.vertex.attribute(dnet,

’infected’, ’gray’,onset=0,terminus=Inf)

activate.vertex.attribute(dnet,

’infected’, ’red’, onset=0, terminus=Inf, v=seeds)

transmissions = NULL

for (t in 1:duration) {
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infecteds = which(get.vertex.attribute.active(

dnet, prefix=’infected’, at=t) == ’red’)

newinfects = NULL

for (i in infecteds) {

partners = get.neighborhood.active(dnet, v=i, at=t)

# discordant couples

partners = partners[!(partners %in% infecteds)]

partners = partners[!(partners %in% newinfects)]

for (j in partners) {

if (runif(1) < infection.prob) {

newinfects = c(newinfects, j)

# record transmission

transmissions = rbind(transmissions, c(i, j))

}

}

}

if (!is.null(newinfects))

activate.vertex.attribute(dnet,

’infected’, ’red’, onset=t, terminus=Inf, v=newinfects)

cat(t, ’ ’)

}

set.network.attribute(dnet, ’transmissions’, transmissions)

return(dnet)

}

> dnet = infectsim(dnet, duration=1000, seeds)

Since the network is too large to be properly visualized, we will extract
the sub-network of only the people who were infected, using the function
get.inducedSubgraph.

> allinfected = which(get.vertex.attribute.active(

dnet, prefix=’infected’, at=1000) == ’red’)

> subnet2 <-get.inducedSubgraph(dnet, allinfected)

In the animation here, we use both a standard vertex attribute (sex), and
a temporally extended attribute (infected) to control the shape and color of
the vertices. If an attribute name is in quotes (“infected”), the renderer
will attempt to match it to a TEA. Note that the infected attribute is set
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to either “red” for infected, or “gray” for uninfected. Currently this is the
simplest way to specify the color representation of a TEA; there will be a
function to remap attributes to customized graphical properties in a future
version of ndtv.

> slice.par <- list(start=0, end=1000,

interval=10, aggregate.dur=10, rule=’any’)

> compute.animation(subnet2,

slice.par=slice.par,animation.mode=’MDSJ’)

> x11()

> sex.shapes <- ifelse(

get.vertex.attribute(subnet2, ’sex’)=="male", 4, 50)

> render.animation(subnet2,

displaylabels=FALSE,vertex.cex=.8,

vertex.col="infected",

edge.col=’#77777780’, vertex.sides=sex.shapes,

vertex.rot=45)

The dynamic network shown here represents mostly long-term hetero-
sexual relationships, with some concurrency. Even when the animation is
sped up to 10 time steps per frame, the number of relationship formations
and dissolutions remain low. Transmission in a discordant relationship here
is a near certainty.

In contrast, the MSM network simulated in Example 4 of this tutorial
has much shorter relationship durations. The same infection simulation on
that network can be visualized and compared. Here, the borders of the
vertices are colored by race.

> subnet2 <- infectsim(msm.sim, duration=120)

> slice.par <- list(start=0, end=100,

interval=1, aggregate.dur=1, rule=’any’)

> compute.animation(subnet2,

slice.par=slice.par,animation.mode=’MDSJ’)

> x11()

> racecols <- ifelse(

get.vertex.attribute(subnet2, ’race’)==0, ’#3C2E28’, ’#A57E6E’)

> render.animation(subnet2,

displaylabels=FALSE,vertex.cex=1,

vertex.border=racecols,

vertex.col=’infected’, edge.col=’#77777780’)

> ani.replay()
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14 Additional functionality

Both the stergm functions and the networkDynamic package have additional
functionality, which you can learn about and explore through the use of R’s
many help features. If you begin to use them in depth, you will likely have
further questions. If so, we encourage you to join the statnet users’ group
(http://csde.washington.edu/statnet/statnet_users_group.shtml), where
you can then post your questions (and possibly answer others). You may also
encounter bugs; please use the same place to report them. Happy stergming!
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