Exponential Random Graph Models

<table>
<thead>
<tr>
<th>University of Washington Network Modeling Group</th>
<th>University of Melbourne</th>
<th>Other contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Handcock</td>
<td>Garry Robins</td>
<td>Tom Snijders</td>
</tr>
<tr>
<td>Steven Goodreau</td>
<td>Pip Pattison</td>
<td>Marijtje von Duijn (Groningen)</td>
</tr>
<tr>
<td>Skye Bender-deMoll</td>
<td>Peng Wang</td>
<td></td>
</tr>
<tr>
<td>Martina Morris (UW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carter Butts (UCI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dave Hunter (PSU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Moody (Duke)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>Why statistical models for networks?</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Dyad independence</td>
<td>P1, loglinear models</td>
<td></td>
</tr>
<tr>
<td>Dyad dependence</td>
<td>Neighborhoods, conditional independence, Markov models, latent space, general form</td>
<td></td>
</tr>
<tr>
<td>ERGM framework</td>
<td>Model specification, degeneracy, diagnostics</td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>MCMC, MLE vs. MPLE, simulation</td>
<td></td>
</tr>
<tr>
<td>Advanced model specification</td>
<td>New terms, goodness of fit</td>
<td></td>
</tr>
</tbody>
</table>
What is a statistical model?

The word “model” means different things in different subfields

• A statistical model is a
 – formal representation of a
 – stochastic process
 – specified at one level (e.g., person, dyad) that
 – aggregates to a higher level (e.g., population, network)
Statistical analysis, given a model

• Estimate parameters of the process
 – Joint estimation of multiple, possibly correlated, effects

• Inference from sampled data to population
 – Uncertainty in parameter estimates

• Goodness of fit
 – Traditional diagnostics
 • Model fit (BIC, AIC)
 • Estimation diagnostics (MCMC performance)
 – Network-specific GOF
 • Network statistics in the model as covariates
 • Network properties not in the model
Why take a statistical approach?

Descriptive vs. generative goals

- **Descriptive**: numerical summary measures
 - Nodal level: e.g., centrality, geodesic distribution
 - Configuration level: e.g., cycle census
 - Network level: e.g., centralization, clustering, small world, core/periphery

- **Generative**: micro foundations for macro patterns
 - Recover underlying dynamic process from x-sectional data
 - Test alternative hypotheses
 - Extrapolate and simulate from model
ERGMs are a hybrid:

Traditional (generalized) linear models (statistical)
- \textit{but}
 - Unit of analysis: relation (dyad)
 - Observations may be dependent (like a complex system)
 - Complex nonlinear and threshold effects
 - Estimation is different

Agent-based models (mathematical)
- \textit{but}
 - Can estimate model parameters from data
 - Can test model goodness of fit
Substantive considerations

- Original focus of network analysis was generative

Kinship exchange
(Levi-Strauss, White)

Balance theory
(Heider)
Substantive considerations

But different processes can lead to similar macro signatures

For example: “clustering” typically observed in social nets

- Sociality – highly active persons create clusters
- Homophily – assortative mixing by attribute creates clusters
- Triad closure – triangles create clusters
Example: Friend of a friend, or birds of a feather?

Two theories about the process that generates 3-cycles:

1. **Homophily**
 People tend to choose friends who are like them, in grade, race, etc.
 (“birds of a feather”), triad closure is a by-product

2. **Transitivity**
 People who have friends in common tend to become friends
 (“friend of a friend”), closure is the key process

So, for three actors of the same type:

Cycle-closing tie forms because of transitivity
but also homophily
Basic statistical model

\[PP(Y) \propto \sum_{k=1}^{K} \theta_k g_k(y) \]

Probability of the graph

Simplest model: Bernoulli random graph (Erdős-Rényi)

All ties \(x_{ij} \) are equally probable and independent (iid)

So the probability of the graph just depends on the cumulative probability of each tie:

\[\theta \sum_{i=1}^{n} y_{ij} \]
Re-expressed in terms of p(tie)

\[P(Y = y) = \exp\left\{ \sum_{k=1}^{K} \theta_k g_k(y) \right\} / \kappa(\theta) \]

Probability of the graph

\[P(y_{ij} = 1 \mid Y^{(ij)}) = P(Y^+) / \{P(Y^+) + P(Y^-)\} \]

Probability of \(ij \) tie, conditional on the rest of the graph

\[
\text{logit}[P(y_{ij} = 1 \mid Y^{(ij)})] = \theta_1 \partial_1 (y^{(ij)}) + \theta_2 \partial_2 (y^{(ij)}) + \ldots + \theta_k \partial_k (y^{(ij)})
\]

Conditional log odds of the tie.

\(\delta \) is the “change statistic”, the change in the value of the covariate \(g(y) \) when the \(ij \) tie changes from 1 to 0

So \(\theta \) is the impact of the covariate on the log-odds of a tie

Sunbelt 2006
What kinds of covariates?

What creates heterogeneity in the probability of a tie being formed?

<table>
<thead>
<tr>
<th>attributes of nodes</th>
<th>Heterogeneity by group</th>
<th>attributes of links</th>
<th>Heterogeneity in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Average activity</td>
<td></td>
<td>- Duration</td>
</tr>
<tr>
<td></td>
<td>- Mixing by group</td>
<td></td>
<td>- Types (sex, drug…)</td>
</tr>
<tr>
<td>Individual heterogeneity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>configurations</td>
<td>Degree distributions (or stars)</td>
<td>Cycle distributions (2, 3, 4, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dyad Independent Terms

Dyad Dependent Terms

Sunbelt 2006
Two modeling components

\[P(Y = y) = \exp \left\{ \sum_{k=1}^{K} \theta_k g_k (y) \right\} / \kappa(\theta) \]

Covariates: what terms in the model?

Coefficients: \textit{Homogeneity constraints} for coefficients on terms?

For example:

covariate: edges, etc.

coefficient: each edge has the same probability vs. each edge has different probabilities or some edges have different probabilities
Example: homogeneous Bernoulli random graph

Every tie has equal probability, log-odds of a tie = θ

$$P(Y_{ij} = y_{ij}) = \frac{e^{\theta y_{ij}}}{1 + e^{\theta}}$$

And because the ties are independent, the joint probability is simply the product of the individual probabilities:

$$P(Y = y) = \exp \left\{ \theta \sum_{i,j} y_{ij} \right\} / \left[1 + \exp \{\theta\} \right]^E$$

Sunbelt 2006
Model Holland and Leinhardt (1981)

Attractiveness, expansiveness & mutuality

\[\sum_{i=1}^{n} \alpha_i y_{i+} + \sum_{j=1}^{n} \beta_j y_{+j} + \rho \sum_{i<j} y_{ij} y_{ji} \]

Marginal effects for each actor (indegree and outdegree)

Homogeneity constraint on mutuality

Dyadic independence

Sunbelt 2006
Add exogenous attributes as covariates
group specific indegree outdegree, and mixing

\[\sum \alpha_k \sum_{i \in k} y_{i+} + \sum \beta_l \sum_{j \in l} y_{+j} + \sum \phi_{kl} \sum_{i \in k, j \in l} y_{ij} + \rho \sum y_{ij} y_{ji} \]

Similar to loglinear models for attribute based mixing

Still dyadic independence
What happens when ties are dependent?