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Basic resources 

R webpage: http://www.r-project.org 
Helpful R tutorials: http://cran.r-project.org/other-docs.html 
statnet webpage:  www.statnet.org 
statnet help: statnet_help@statnet.org 

 
 
Typographical conventions 
 

Text in Courier bold represents code for you to type. 
 
Text in Courier regular represents R output. 
 
# Text after pound signs is a comment 
 
All other text represents instructions and guidance.  

Two other workshops 
now cover this material 
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SECTION 0.  GETTING STARTED  
 
 
Open an R session, and set your working directory to the location where you would like to save this work.  You can do this 
with the pull-down menus (File>Change Dir) or with the command: 
 
setwd('full.path.for.the.folder') 
 
To install all of the packages in the statnet suite:  
install.packages('statnet') 
library(statnet) 
 
Or, to only install the specific statnet packages needed for this tutorial: 
install.packages('network') 
install.packages('ergm') 
install.packages('sna') 
library(network) 
library(ergm) 
library(sna) 
 
After the first time, to update the packages one can either repeat the commands above, or use: 
update.packages('name.of.package') 
 
For this tutorial, we will need one additional package (coda), which is recommended (but not required) by ergm: 
install.packages('coda') 
library(coda) 
 
 
 
 
SECTION 1.  STATISTICAL NETWORK MODELING; THE ERGM COMMAND AND ERGM OBJECT. 
 
Make sure the statnet package is attached: 
 
library(statnet) 
 
or  
 
library(ergm) 
library(sna) 
 
The ergm package contains several network data sets that you can use for practice examples. 
 
data(package='ergm')    # tells us the datasets in our packages 
data(florentine)     # loads flomarriage & flobusiness data 
flomarriage      # Let’s look at the flomarriage data 
plot(flomarriage)     # Let’s view the flomarriage network 
 
Remember the general ergm representation of the probability of the observed network, and the conditional log-odds of a tie: 
 
 
 P(Y=y) = exp[θ′g(y)] / k(θ)   # Y is a network, g(y) is a vector of network stats 
       # θ is the vector of coefficients, k(θ) is a normalizing constant 
         
 logit(P(Yij =1 | Yc)) = θ ′Δ(g(y))ij   # Yij is an actor pair in Y, Yc is the rest of the network,   
       # Δ(g(y))ij  is the  change in g(y) when the value of  

# Yij is toggled on 
 
 
We begin with the simplest possible model, the Bernoulli or Erdös-Rényi model, which contains only an edge term. 
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flomodel.01 <- ergm(flomarriage~edges)   # fit model 
flomodel.01        # look at the model 
 
Newton-Raphson iterations:  5  
 
MLE Coefficients: 
 edges   
-1.609   
 
summary(flomodel.01)      # look in more depth 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   flomarriage ~ edges 
 
Newton-Raphson iterations:  5  
 
Maximum Likelihood Results: 
      Estimate Std. Error MCMC s.e. p-value     
edges  -1.6094     0.2449        NA  <1e-04 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
For this model, the pseudolikelihood is the same as the likelihood. 
 
    Null  Deviance: 166.355  on 120  degrees of freedom 
 Residual Deviance: 108.135  on 119  degrees of freedom 
          Deviance:  58.221  on   1  degrees of freedom 
  
AIC: 110.13    BIC: 112.92 
 
 
How to interpret this model?  The log-odds of any tie occurring is: 
 = -1.609 * change in the number of ties 
 = -1.609 * 1     # for all ties, since the addition of any tie to the  
       # network changes the number of ties by 1! 
Corresponding probability is: 

=  exp(-1.609) /  (1+ exp(-1.609)) 
 = 0.1667      # what you would expect, since there are 20/120 ties 
 
Let’s add a term often thought to be a measure of “clustering” --  the number of completed triangles 
 
flomodel.02 <- ergm(flomarriage~edges+triangle)   
 
# Note we’re in stochastic simulation now – your output will differ 
 
flomodel.02 <- ergm(flomarriage~edges+triangle) 
Iteration 1 of at most 20:  
the log-likelihood improved by 0.001786  
Iteration 2 of at most 20:  
the log-likelihood improved by 0.0005837  
Iteration 3 of at most 20:  
the log-likelihood improved by 0.0001311  
Iteration 4 of at most 20:  
the log-likelihood improved by < 0.0001  
Iteration 5 of at most 20:  
Convergence detected. Stopping early. 
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the log-likelihood improved by < 0.0001  
 
This model was fit using MCMC.  To examine model diagnostics and check for 
degeneracy, use the mcmc.diagnostics() function. 
 
 
summary(flomodel.02) 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   flomarriage ~ edges + triangle 
 
Iterations:  20  
 
Monte Carlo MLE Results: 
         Estimate Std. Error MCMC % p-value     
edges     -1.6748     0.3518      0  <1e-04 *** 
triangle   0.1557     0.5960      0   0.794     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Log-likelihood was not estimated for this fit. 
To get deviances, AIC, and/or BIC from fit `flomodel.02` run  
  > flomodel.02<-logLik(flomodel.02, add=TRUE) 
to add it to the object or rerun this function with eval.loglik=TRUE. 
 
 
Again, how to interpret coefficients? 
 
Conditional log-odds of two actors forming a tie is: 
 
 -1.673 * change in the number of ties  +  0.139 * change in number of triangles 
 
if the tie will not add any triangles to the network, its log-odds. is -1.673. 
if it will add one triangle to the network, its log-odds is -1.673 + 0.139 = -1.534 
if it will add two triangles to the network, its log-odds is: -1.673 + 0.139*2 = -1.395 
 
the corresponding probabilities are 0.158, 0.177, and 0.199. 
 
Let’s take a closer look at the ergm object itself: 
 
class(flomodel.02)    # this has the class ergm 
[1] 'ergm' 
 
names(flomodel.02)    # let’s look straight at the ERGM obj. 
     
 [1] "coef"          "sample"        "sample.obs"    "iterations"    "MCMCtheta"     
 [6] "loglikelihood" "gradient"      "covar"         "failure"       "mc.se"         
[11] "network"       "newnetwork"    "coef.init"     "initialfit"    "coef.hist"     
[16] "stats.hist"    "null.deviance" "etamap"        "formula"       "target.stats"  
[21] "constrained"   "constraints"   "control"       "reference"     "estimate"      
[26] "offset"        "drop"          "estimable"     “mle.lik” 
 
flomodel.02$coef    # the $ allows you to pull an element out from 
flomodel.02$formula   # a list 
flomodel.02$mle.lik 
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wealth <- flomarriage %v% 'wealth'  # the %v% extracts vertex attributes from a 
wealth      # network 
plot(flomarriage, vertex.cex=wealth/25) # network plot with vertex size  

# proportional to wealth 
 
We can test whether edge probabilities are a function of wealth: 
 
flomodel.03 <- ergm(flomarriage~edges+nodecov('wealth')) 
summary(flomodel.03) 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   flomarriage ~ edges + nodecov("wealth") 
 
Newton-Raphson iterations: 4 
 
Maximum Likelihood Results: 
                Estimate Std. Error MCMC s.e. p-value     
edges          -2.594929   0.536056        NA  <1e-04 *** 
nodecov.wealth  0.010546   0.004674        NA  0.0259 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
For this model, the pseudolikelihood is the same as the likelihood. 
 
    Null  Deviance: 166.355  on 120  degrees of freedom 
 Residual Deviance: 103.109  on 118  degrees of freedom 
          Deviance:  63.247  on   2  degrees of freedom 
  
AIC: 107.11    BIC: 112.68  
 
Yes, there is a significant positive wealth effect on the probability of a tie. 
 
 
************************************************************************************* 
 
data(samplk)     # Let’s try a model or two on 
ls()       # directed data: Sampson’s Monks 
samplk3 
plot(samplk3) 
sampmodel.01 <- ergm(samplk3~edges+mutual)# Is there a statistically significant  
summary(sampmodel.01)    # tendency for ties to be reciprocated  

# (“mutuality”)? 
data(faux.mesa.high)    # Let’s try a larger network 
mesa <- faux.mesa.high 
plot(mesa)       
mesa 
plot(mesa, vertex.col='Grade') 
legend('bottomleft',fill=7:12,legend=paste('Grade',7:12),cex=0.75) 
 
fauxmodel.01 <- ergm(mesa ~edges + nodematch('Grade',diff=T) + 
 nodematch('Race',diff=T)) 
 
summary(fauxmodel.01) 
 
Note that two of the coefficients are estimated as –Inf (the nodematch coefficients for race Black and Other).  Why is this? 
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table(mesa %v% "Race")    # Frequencies of race 
mixingmatrix(mesa, "Race") 
 
So the problem is that there are very few students in the Black and Other race categories, and these students form no 
homophilous (within-group) ties.  The empty cells are what produce the –Inf estimates. 
 
Time to consider some missing data: 
 
missnet <- network.initialize(10,directed=F) 
missnet[1,2] <- missnet[2,7] <- missnet[3,6] <- 1 
missnet[4,6] <- missnet[4,9] <- NA 
missnet 
plot(missnet) 
ergm(missnet~edges) 
 
The coefficient equals -2.590. This is the logodds of the probability .0698. Our network has 3 ties, out of the 43 nodal pairs (10 
choose 2 minus 2) whose dyad status we have observed.  3/43 = 0.0698. 
 
ergm(missnet~edges+degree(2)) 
 
missnet[4,6] <- missnet[4,9] <- 0 
 
ergm(missnet~edges+degree(2)) 
 
The two estimates for the degree2 coefficient differ considerably.  In the first case, there is one node we know for sure has 
degree 2, two that may or may not, and seven that we know for sure do not. In the latter, there is one node that has degree 2, 
and nine that do not. 
 
 
 
SECTION 2.  MODEL TERMS AVAILABLE FOR ergm ESTIMATION and SIMULATION 
 
Model terms are the expressions (e.g. “triangle”) used to represent predictors on the right-hand size of  equations used in: 
 
 calls to ergm (to estimate an ergm model) 
 calls to simulate (to simulate networks from an ergm model fit) 
 calls to summary (to obtain measurements of network statistics on a dataset) 
 
 
4.1. Terms provided with ergm 
 
For a list of available terms that can be used to specify an ERGM, see Appendix B, or type: 
 
help('ergm-terms') 
 
For a more complete discussion of these terms see the 'Specifications' paper in J Stat Software v. 24. (link is available online at 
www.statnet.org) 
 
4.2. Coding new terms 
 
We have recently released a new package (ergm.userterms) and tutorial aimed at making it much easier than before to 
write one's own terms.  The package is available on CRAN, and installing it will also download the tutorial 
(ergmuserterms.pdf).  We teach a workshop at the Sunbelt meetings, and are also hoping for the tutorial to appear soon in the 
Journal of Statistical Software. Note that writing up new ergm terms requires some knowledge of C and the ability to build R 
from source (although the latter is covered in the tutorial). 



 Statnet Tutorial – Sunbelt 2011   7 

SECTION 3.  NETWORK SIMULATION: THE SIMULATE COMMAND AND NETWORK.LIST OBJECTS. 

 
Once we have estimated the coefficients of an ERGM, the model is completely specified.  It defines a probability distribution 
across all networks of this size.   If the model is a good fit to the observed data, then networks drawn from this distribution will 
be more likely to "resemble" the observed data.  To see examples of networks drawn from this distribution we use the 
simulate command: 
 
flomodel.03.sim <- simulate(flomodel.03,nsim=10) 
 
class(flomodel.03.sim) 
[1] 'network.list' 
 
 
summary(flomodel.03.sim) 
Number of Networks: 10  
Model: flomarriage ~ edges + nodecov("wealth")  
Reference: Bernoulli  
Constraints: ~.  
Parameters: 
         edges nodecov.wealth  
   -2.59492903     0.01054591  
 
Stored network statistics: 
      edges nodecov.wealth 
 [1,]    20           2089 
 [2,]    25           2432 
 [3,]    21           1897 
 [4,]    27           2956 
 [5,]    18           2094 
 [6,]    24           2761 
 [7,]    22           1926 
 [8,]    14           1551 
 [9,]    19           1857 
[10,]    21           1878 
 
length(flomodel.03.sim)     
[1] 10 
 
flomodel.03.sim[[1]]   # double brackets pull an element  
      # out of a list by position # 
Network attributes: 
  vertices = 16  
  directed = FALSE  
  hyper = FALSE  
  loops = FALSE  
  multiple = FALSE  
  bipartite = FALSE  
  total edges= 20  
    missing edges= 0  
    non-missing edges= 20  
 
 Vertex attribute names:  
    priorates totalties vertex.names wealth 
 
plot(flomodel.03.sim[[1]], label= flomodel.03.sim[[1]] %v% “vertex.names”) 
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Voilà.  (Of course, yours will look somewhat different.) 
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SECTION 4.  EXAMINING THE QUALITY OF MODEL FIT – GOF. 
 
ERGMs are generative models – that is, they represent the process that governs tie formation at a local level.  These local 
processes in turn aggregate up to produce characteristic global network properties, even though these global properties are not 
explicit terms in the model.  One test of whether a model "fits the data" is therefore how well it reproduces these global 
properties.  We do this by choosing a network statistic that is not in the model, and comparing the value of this statistic 
observed in the original network to the distribution of values we get in simulated networks from our model.  
 
flomodel.03.gof <- gof(flomodel.03~degree) 
 
flomodel.03.gof 
plot(flomodel.03.gof) 
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mesamodel.02 <- ergm(mesa~edges) 
mesamodel.02.gof <- gof(mesamodel.02~distance,nsim=10) 
plot(mesamodel.02.gof) 
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(for a good example of model exploration and fitting for the Add Health Friendship networks, see Goodreau Kitts & Morris 
Demography 2009)
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SECTION 5.  DIAGNOSTICS: TROUBLESHOOTING AND CHECKING FOR  MODEL DEGENERACY 
 
The computational algorithms in ergm use MCMC to estimate the likelihood function.  Part of this process involves 
simulating a set of networks to approximate unknown components of the likelihood.  
 
When a model is not a good representation of the observed network the estimation process may be affected.  In the worst case 
scenario, the simulated networks will be so different from the observed network that the algorithm fails altogether. This can 
occur for two general reasons. First, the simulation algorithm may fail to converge, and the sampled networks are thus not from 
the specified distribution. Second, the model parameters used to simulate the networks are too different from the MLE, so even 
though the simulation algorithm is producing a representative sample of networks, this is not the sample that would be 
produced under the MLE. 
 
For more detailed discussions of model degeneracy in the ERGM context, see the papers in J Stat Software v. 24. (link is 
available online at www.statnet.org) 
 
 
We can use diagnostics to see what is happening with the simulation algorithm, and these can lead us to ways to improve it. 
We will first consider a simulation where the algorithm works. To understand the algorithm, consider 
 
fit <- ergm(flobusiness~edges+degree(1),  
 control=control.ergm(MCMC.interval=1, MCMC.burnin=1000, seed=1)) 
 
This runs a version with every network returned. Let us look at the diagnostics produced: 
 
mcmc.diagnostics(fit, center=F) 
 
Let’s look more carefully at a default model fit: 
 
fit <- ergm(flobusiness~edges+degree(1)) 
 
To see the diagnostics use:  
 
mcmc.diagnostics(fit, center=F) 
 
Now let us look at a more interesting case, using a larger network:  
 
data('faux.magnolia.high') 
magnolia <- faux.magnolia.high 
plot(magnolia, vertex.cex=.5) 
 
fit <- ergm(magnolia~edges+triangle, 
 control=control.ergm(seed=1)) 
mcmc.diagnostics(fit, center=F) 
 
Very interesting. You could have gotten some more feedback about this during the fitting, by using: 
 
fit <- ergm(magnolia~edges+triangle, 
 control=control.ergm(seed=1), 
 verbose=T) 
 
You might try to increase the MCMC sample size: 
 
fit <- ergm(magnolia~edges+triangle,seed=1, 
 control = control.ergm(seed=1, MCMC.samplesize=20000), 
 verbose=T) 
mcmc.diagnostics(fit, center=F) 
 
Now, try it again with a sample size of 50,000. 
 



 Statnet Tutorial – Sunbelt 2011   11 

How about trying the more robust version of modeling triangles -- GWESP?  (For a technical introduction to GWESP see 
Hunter and Handcock; for a more intuitive description and empirical application see Goodreau Kitts and Morris 2009) 
 
fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T), 
 control =  control.ergm(seed=1)) 
mcmc.diagnostics(fit) 
 
Still degenerate, but maybe getting closer? 
 
fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T)+nodematch('Grade')+nodematch('Race')+ 
 nodematch('Sex'), 
 control = control.ergm(seed=1), 
 verbose=T) 
 
pdf('diagnostics1.pdf') #Use the recording function if possible, otherwise send to 
pdf 
mcmc.diagnostics(fit) 
dev.off()   #If you saved to pdf, look at the file 
 
fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+ 
 nodematch('Sex'), 
 control = control.ergm(seed=1)) 
 
pdf('diagnostics2.pdf') #Ditto 
mcmc.diagnostics(fit) 
dev.off()   #If you saved to pdf, look at the file 
 
args(ergm) 
 
fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+ 
 nodematch('Sex'), 
 control = control.ergm(seed=1,MCMC.samplesize=50000,MCMC.interval=1000), 
 verbose=T) 
pdf('diagnostics3.pdf') #Ditto 
mcmc.diagnostics(fit) 
dev.off()   #If you saved to pdf, look at the file 
 
Success!  Of course, in real life one might have a lot more trial and error. 
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SECTION 6.  WORKING WITH EGOCENTRICALLY SAMPLED NETWORK DATA 
 
In many empirical contexts, it is not feasible to collect a network census or even an adaptive (link-traced) sample.  Even when 
one of these may be possible in practice, egocentrically sampled data are typically cheaper and easier to collect.   
 
Long regarded as the poor country cousin in the network data family, egocentric data contain a remarkable amount of 
information.  With the right statistical methods, such data can be used to explore the properties of the complete networks in 
which they are embedded.  The basic idea here is to combine what is observed, with assumptions, to define a class of models 
that describe the distribution of networks that are centered on the observed properties.  The variation in these networks 
quantifies some of the uncertainty introduced by the assumptions. 
 
Let’s start with a simple fictional example:  You have a sample of persons who were asked about the friends they had seen 
face-to-face more than once in the last week.  The respondent was asked their own sex, and the sex of each friend (for up to 
three friends).   Summary statistics from these data thus include the sex distribution, the degree distribution (it could be broken 
down by sex, but we will just examine the marginal distribution here), and the joint distribution of the respondent and friend’s 
sex (the sex mixing matrix).  Let’s assume there are equal numbers of men and women in the sampled respondents.  The other 
distributions are shown below:

 
Degee distribution (number of friends seen > once) 
 

 
Sex Mixing Matrix  
 

Degree  Frequency  Fraction  Ties 

0  180  0.36  0 

1  245  0.49  245 

2  60  0.12  120 

3  15  0.03  45 

Total  500  1.00  410 

 

Friend's sex 

M  F  Total 

Respondent  
Sex 

M  164  44

F  26  176

Total  410 
 
 

So, total N respondents = 500, total N friends reported = 410.   
 
 
We can use an ERGM to fit the parameters associated with these observed statistics, then use the fitted model to simulate 
complete networks that are drawn from the distribution of networks that is centered around these statistics.  As a theoretical 
exercise, this provides a method for investigating the complete network implications of these observed summary statistics.  As 
an empirical exercise, the primary assumption needed for inference is that the data we have is sampled from a population in 
equilibrium (and, as in all statistical inference, that our model is correct).  The theory for this is developed in Krivitsky, 2009. 
 
 
We need to make assumptions about size, directedness and bipartite-ness when we model and simulate the complete network. 

 Size:  any size can be simulated, but if the model is fit using the observed frequencies, it should be used to simulate a 
population of that size, unless a size adjustment is made in the simulation  (see Krivitsky, Handcock and Morris 
2011).  We are going to work with a population size 500 here, equal to the number of respondents. 

 Directedness:  Ego data are in one sense inherently directed (respondents nominate alters, alters are not observed), but 
the relationship may be either.  In this case (“seen more than once”) it is undirected, so we will fit and simulate an 
undirected network. 

 Bipartite:  Ego data can be bipartite (if no alters are also respondents, or data are collected on 2-mode networks)  or 
not (if respondents are also alters).  But again, the relationship may be either.  “Seen” is undirected, and we will fit 
and simulated and undirected network. 

 
In sum, we will simulate a one-mode, undirected network of size 500, assuming the ego statistics we observed contain the 
information we need to calculate the statistics that would have been observed in a self-contained population of that size, noting 
that other assumptions are possible. 
 
To ensure consistency between the degree distribution (which is a tabulation of nodes) and the mixing matrix (which is a cross-
tabulation of ties) in our simulated “complete network,” it is important to recognize that in a complete network, the degree 
distribution should imply twice the number of ties observed in the mixing matrix, because every tie is being reported by both 
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nodes in the degree distribution.  If we are fixing the population size at 500 in this simulation, then our observed mixing matrix 
data needs to be divided by 2. 
 
Start by initializing an empty network of the desired size and assign the “sex” attribute to the nodes: 
 
ego.net <- network.initialize(500, directed=F) 
ego.net %v% 'sex' <- c(rep(0,250),rep(1,250)) 
 
 
Set up the observed statistics (adjusted for this “complete” network) as we will use them to assess the accuracy of the 
simulation later: 
 
ego.deg <- c(180, 245, 60, 15)     # node distn 
ego.mixmat <- matrix(c(164,44,26,176)/2, nrow=2, byrow=T) # adjusted tie distn 
 
 
Then, pick the observed statistics you want to target – we will start with a simple model here:  the total number of ties (edges), 
and the number of sex-matched ties (homophily).  These are both functions of the observed statistics: 
 
ego.edges <- sum(ego.mixmat) 
ego.sexmatch <- ego.mixmat[1,1]+ego.mixmat[2,2] 
 
And combine these into a vector  
 
ego.target.stats <- c(ego.edges, ego.sexmatch) 
ego.target.stats 
 
 
Now, fit an ERGM to this “network”, with terms for the statistics you want to match, and the “target.stats” argument for ergm 
that specifies the target values for those statistics: 
 
ego.fit <- ergm(ego.net ~ edges + nodematch('sex'), 
 target.stats = ego.target.stats) 
 
Iteration 1 of at most 20:  
Convergence detected. Stopping early. 
the log-likelihood improved by 0.0001152  
 
This model was fit using MCMC.  To examine model diagnostics and check for 
degeneracy, use the mcmc.diagnostics() function. 
 
summary(ego.fit) 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   nw ~ edges + nodematch("sex") 
<environment: 0x0f83a7ac> 
 
Iterations:  20  
 
Monte Carlo MLE Results: 
              Estimate Std. Error MCMC % p-value     
edges          -7.4889     0.1689      0  <1e-04 *** 
nodematch.sex   1.5877     0.1822      0  <1e-04 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
    Null  Deviance: 172940.2  on 124750  degrees of freedom 
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 Residual Deviance:   2940.7  on 124748  degrees of freedom 
          Deviance: 169999.5  on      2  degrees of freedom 
  
AIC: 2944.7    BIC: 2964.2 
 
Take a look at the fitted model: 
 
summary(ego.fit) 
 
summary(ego.fit) 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   nw ~ edges + nodematch("sex") 
 
Iterations:  20  
 
Monte Carlo MLE Results: 
              Estimate Std. Error MCMC % p-value     
edges          -7.4889     0.1689      0  <1e-04 *** 
nodematch.sex   1.5877     0.1822      0  <1e-04 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
    Null  Deviance: 172940.2  on 124750  degrees of freedom 
 Residual Deviance:   2940.7  on 124748  degrees of freedom 
          Deviance: 169999.5  on      2  degrees of freedom 
  
AIC: 2944.7    BIC: 2964.2 
 
Now that you have a fitted model, you can simulate a complete network from it, and look at the results: 
 
ego.sim1 <- simulate(ego.fit) 
plot(ego.sim1, vertex.cex=.65, vertex.col="sex") 
 

 
 
Does it reproduce the observed degree and mixing frequencies? 
 
rbind(summary(ego.sim1 ~ degree(c(0:3))), ego.deg) 
 
        degree0 degree1 degree2 degree3 
            204     199      71      20 
ego.deg     180     245      60      15 
mixingmatrix(ego.sim1, "sex") 

We only targeted the total number of edges, 
not the full degree distribution 
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Note:  Marginal totals can be misleading 
 for undirected mixing matrices. 
   0  1 
0 95 37 
1 37 81 
> ego.mixmat 
     [,1] [,2] 
[1,]   82   22 
[2,]   13   88 
 
 
The simulation stats seem quite different than the observed stats, and there are two possible reasons:  either we mis-specified 
the original model (bias), or this one random draw may be unrepresentative of the distribution described by the model 
(variance).   The latter is easily examined by simulating 100 networks, to see where the observed data fall in the distribution of 
networks produced by the model: 
 
ego.sim100 <- simulate(ego.fit, nsim=100) 
ego.sim100 
 
Number of Networks: 100  
Model: nw ~ edges + nodematch("sex")  
Constraints: ~.  
Parameters: 
        edges nodematch.sex  
    -7.488886      1.587689 
 
More information can be obtained with  
 
summary(ego.sim100) 
 
 
First, we’ll look at how well the simulations reproduced the target statistics that were included in the model (note, not the 
observed full distributions): 
 
sim.stats <- attr(ego.sim100,"stats") 
rbind(colMeans(sim.stats), ego.target.stats) 
 
                  edges nodematch.sex 
                 203.06           169 
ego.target.stats 205.00           170 
 
These look pretty good – the means of the simulated target stats are within 1% of the observed. We can plot the 100 replicates 
to see check the variation for any problematic patterns: 
 
matplot(1:nrow(sim.stats), sim.stats,  
  pch=c("e","m","0","+"), cex=.65,  
  main="100 simulations from ego.fit model", sub="(default settings)", 
  xlab="Replicate", ylab="frequency") 
abline(h=ego.target.stats, col=c(1:4)) 
 

We only targeted the number of same-sex ties, 
not the full mixing matrix 
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The lines mark the target statistic frequencies in the 
observed data.  The points represent the frequencies in the 
simulated networks. 
 
The simulated network statistics vary stochastically around 
the target values, not trending over time. 
 
But – there is clear autocorrelation across the replicates, 
which suggests we might want to increase the MCMC 
interval to draw more independent realizations. 
 
 

 
 
 
ego.sim100 <- simulate(ego.fit, nsim=100, 
  control=control.simulate.ergm(MCMC.interval=10000)) 
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With the larger interval, the autocorrelation is no longer 
detectable, and all of the statistics from the simulated 
networks vary in a symmetric band around their targets. 
 
The variation (about +/- 10%) represents the range of 
target statistics that are consistent with the fitted 
coefficients. 
 
If you wanted instead to constrain these statistics to equal 
a specified value, then you can use the “constraints=” 
argument during the ergm fit instead. 

 
 
 
This is good for verifying that the simulation reproduces the target values we specified.  So now let’s see whether the simulated 
complete networks also match statistics that were not set by the targets.  We targeted edges and homophily.  How well does 
this model reproduce the full degree distribution? 
 
sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10))) 
sim.fulldeg 
      degree0 degree1 degree2 degree3 degree4 degree5 degree6 degree7 degree8 degree9 degree10 
  [1,]     198     190      81      26       5       0       0       0       0       0        0 
  [2,]     207     177      81      33       2       0       0       0       0       0        0 
  [3,]     201     178      87      29       4       1       0       0       0       0        0 
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  [4,]     207     173      86      27       7       0       0       0       0       0        0 
  [5,]     219     168      80      26       7       0       0       0       0       0        0 
   … 

 
Recall that the degree range in our data was [0,3] by design, but we did not constrain the simulations to this range.   If our 
model correctly captured the processes that led to the aggregate statistics we observe in our data, the simulated networks would 
show us what we missed.  Here the simulated networks suggest that the fully observed network would have a wider range of 
degrees, which we might have observed, had we not truncated the data collection at 3 friends per respondent.  About 1% of 
nodes have degree 4 or 5, and the max observed is 6. 
 
But did our model did correctly capture the underlying processes?  How well does the simulated degree distribution from this 
model match the frequencies we did observe?  Aggregating the degrees of 3 or more in the simulations, we find: 
 
sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum)) 
colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+") 
rbind(colMeans(sim.deg),ego.deg) 
 
        degree0 degree1 degree2 degree3+ 
         223.97  176.47   74.87    24.69 
ego.deg  180.00  245.00   60.00    15.00 
 
As with the single simulation above, the discrepancies between the simulation averages and the observed statistics are quite 
large.  We can see this more clearly by plotting the degree frequencies for the 100 replicate networks we simulated: 
 
matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5, 
   main="Comparing ego.sims to non-targeted degree frequencies", 
   sub = "(only total edges targeted)", 
   xlab = "Replicate", ylab = "Frequencies") 
abline(h=c(180, 245, 60, 15), col=c(1:4)) 
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The simulations are producing systematically more 
isolates than expected (the “0” points vs. the black line), 
and systematically more degree 1 nodes.  In fact, the two 
degree frequencies are essentially reversed in the 
simulation.   
 
 
 
 
 
 
The fraction of nodes with 2 or 3+ partners is 
systematically off  but by a much smaller amount. 
 
 
So our observed network has fewer isolates than 
expected in a network of this density, more degree 1 
nodes than expected, and fewer degree 2 and 3+ nodes. 

 
 
This suggests the model is mis-specified.   Since the degree 0 vs. degree 1 is the worst fitting aspect, we will try using the 
number of isolates as a target statistic in the model. 
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ego.isolates <- ego.deg[1] 
ego.target.stats <- c(ego.edges, ego.sexmatch, ego.isolates) 
ego.fit <- ergm(ego.net ~ edges + nodematch('sex') + degree(0), 
 target.stats = ego.target.stats)  
summary(ego.fit) 
 
========================== 
Summary of model fit 
========================== 
 
Formula:   nw ~ edges + nodematch("sex") + degree(0) 
 
Iterations:  20  
 
Monte Carlo MLE Results: 
              Estimate Std. Error MCMC % p-value     
edges          -8.4012     0.2462      1  <1e-04 *** 
nodematch.sex   1.5821     0.1854      1  <1e-04 *** 
degree0        -0.9601     0.1590      0  <1e-04 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
    Null  Deviance: 172940.2  on 124750  degrees of freedom 
 Residual Deviance:   2902.9  on 124747  degrees of freedom 
          Deviance: 170037.3  on      3  degrees of freedom 
  
AIC: 2908.9    BIC: 2938.1 
 
 
Simulating from this model, the target statistics are again well matched: 
 
ego.sim100 <- simulate(ego.fit, nsim=100, 
   control=control.simulate.ergm(MCMC.interval=10000)) 
sim.stats <- attr(ego.sim100,"stats") 
rbind(colMeans(sim.stats), ego.target.stats) 
                  edges nodematch.sex degree0 
                 205.61        169.99  178.79 
ego.target.stats 205.00        170.00  180.00 
 
 
And the full degree frequencies look much better: 
 
sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10))) 
sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum)) 
colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+") 
rbind(colMeans(sim.deg),ego.deg) 
        degree0 degree1 degree2 degree3+ 
         178.79   245.2   63.65    12.36 
ego.deg  180.00   245.0   60.00    15.00 
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and finally, plotting the full degree frequencies 
 
matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5, 
   main="Comparing ego.sims to non-targeted degree frequencies", 
   sub = "(only 0, 2+ and total edges targeted)", 
   xlab = "Replicate", ylab = "Frequencies") 
abline(h=c(180, 245, 60, 15), col=c(1:4)) 
save.image()      #to save your workspace for later 
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The degree frequencies in these simulated networks are now 
well centered on the observed frequencies.  So adding the one 
additional parameter to capture the lower than expected 
number of isolates did a good job of capturing how our 
observed network deviates from a random network with this 
density.   
 
 
 
 
The fraction of nodes with 3+ partners produced by our new 
model might still be a bit low. 

 
Moral:  We can use ERGMs to estimate network models using target statistics from egocentrically sampled data.  The fact that 
the target statistics are reproduced by this model does not guarantee that additional features of the network would also be 
reproduced.    But starting with simple models can help to identify whether and how the aggregate statistics we observe from 
an egocentric sample deviate from those we would expect from the model.  If we fit all of the observed statistics without a 
saturated model, we cannot reject the hypothesis that this model produced the network we sampled from. 
 
We can also use this approach to explore network statistics that are not visible at all from the egocentric data, e.g., the geodesic 
distribution, betweenness, etc., but it must always be remembered that the distributions we will produce are based on our 
model.  They faithfully reproduce the model, but that does not mean that the model faithfully represents the population. 
 
In the STERGM workshop, we show how complete dynamic networks also can be simulated over time on the basis of 
egocentric data like these, with the minimal addition of a single estimate of partnership duration.  For a movie of an example 
dynamic simulation used to explore the impact of network structure on HIV transmission, see statnet.org/movies. 
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SECTION 8. ADDITIONAL FUNCTIONALITY 
 
 
8.1. Additional functionality 
 
The statnet suite of packages currently contains many additional features not covered in this tutorial: 
 

 tools for fitting dynamic network models (stergm, in the ergm base package) 
 tools for fitting relational event models (relevent package) 
 curved exponential family estimation and simulation (ergm base package) 
 latent space and latent cluster analysis (latentnet package) 
 network permutation models (netperm package) 
 MLE estimation for degree distributions (negative binomial, Poisson, scale-free, etc.) (degreenet package) 
 analysis of bipartite networks (network package) 
 simulation of bipartite networks with given degree distributions (networksis package) 
 hierarchical ERGMs (hergm package) 

 
Any of these not in the ergm base package are in stand-alone packages that can be downloaded either from CRAN, or from the 
statnet website.  For more detailed information, please visit the statnet webpage (http://statnet.org). 
 
8.2. Additional functionality in development: 
 

 ERGMs for valued ties – expected later 2012 
 Temporal ERGMs (TERGMs) for longitudinal network panel data, and other temporal extensions – expected later 

2012 
 Temporally extended (vertex and edge) attributes for TERGMS – expected later 2012 
 Network movie maker: ndTV – functionality previewed in STERGM workshop this year, CRAN release expected 

later 2012 
 
8.3. Statnet Commons:  The development group 

Mark S. Handcock <handcock@stat.ucla.edu>,  
David R. Hunter <dhunter@stat.psu.edu>,  
Carter T. Butts <buttsc@uci.edu>, 
Steven M. Goodreau <goodreau@u.washington.edu>,  
Skye Bender-deMoll <skyebend@skyeome.net>, 
Martina Morris <morrism@u.washington.edu>, 
Pavel N. Krivitsky <krivitsky@stat.psu.edu> 
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Appendix A: Clarifying the terms –  ergm and network  
 
You will see the terms ergm and network used in multiple contexts throughout the documentation. This is common in R, but 
often confusing to newcomers. To clarify:  
 
ergm  

 ERGM: the acronym for an Exponential Random Graph Model; a statistical model for relational data that takes a 
generalized exponential family form.  

 ergm package: one of the packages within the statnet suite 
 ergm function: a function within the ergm package; fits an ERGM to a network object, creating an ergm object in the 

process.  
 ergm object: a class of objects produced by a call to the ergm function, representing the results of an ERGM fit to a 

network.  
 
network  

 network: a set of actors and the relations among them. Used interchangeably with the term graph.  
 network package: one of the packages within the statnet suite; used to create, store, modify and plot the 

information found in network objects.  
 network object: a class of object in R used to represent a network. 

 
 
 
 
Appendix B: Table of existing statnet terms 
(see also: Morris, M., D. Hunter and M. Handcock (2008). "Specification of Exponential-Family Random Graph Models: 

Terms and Computational Aspects." Journal of Statistical Software 42(i04). 
 
 
Term Undir? Dir? Bip? Required Args Optional Args 
      
Basic terms      
edges X X X   
density X X X   
mutual   X    
asymmetric  X    
meandeg X X X   
      
Nodal attribute terms      
nodecov (aka nodemain) X X X attrname  
nodefactor X X X attrname  
nodeifactor  X  attrname  
nodeofactor  X  attrname  
nodeicov  X  attrname  
nodeocov  X  attrname  
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nodemix X X X attrname  
nodematch (aka match) X X X attrname  
absdiff X X X attrname  
absdiffcat X X X attrname  
b1factor   X attrname base 
b2factor   X attrname base 
smalldiff X X X attrname, cutoff  
      
Relational attribute terms      
edgecov X X X network or attrname  
dyadcov X X X network or attrname  
hamming X X X network or attrname  
hammingmix  X  network or attrname base 
      
Degree terms      
degree X   vec. of degrees by 
idegree  X  vec. of degrees by 
odegree  X  vec. of degrees by 
b1degree   X vec. of degrees by 
b2degree   X vec. of degrees by 
gwdegree X   decay fixed 
gwidegree  X  decay fixed 
gwodegree  X  decay fixed 
gwb1degree   X decay fixed 
gwb2degree   X decay fixed 
isolates X X X   
concurrent X    by 
b1concurrent   X  by 
b2concurrent   X  by 
degcor X     
degcrossprod X     
adegcor X     
rdegcor X     
indegreepopularity  X    
outdegreepopularity  X    
      
Star terms      
kstar X  X vec. of star sizes attrname 
istar  X  vec. of star sizes attrname 
ostar  X  vec. of star sizes attrname 
b1star   X vec. of star sizes attrname 
b2star   X vec. of star sizes attrname 
b1twostar   X b1attrname, b2attrname base 
b2twostar   X b1attrname, b2attrname base 
b1starmix   X k, attrname  base, diff 
b2starmix   X k, attrname  base, diff 
m2star   X    
altkstar X X X lambda fixed 
      
Cycle and triangle terms      
triangle (aka triangles) X X   attrname 
ctriple (aka ctriad)  X   attrname 
ttriple (aka ttriad)  X   attrname 
tripercent X X   attrname 
cycle X X  vec. of cycle sizes  
localtriangle X X  network or attrname  
balance X X    



 Statnet Tutorial – Sunbelt 2011   23 

triadcensus X X  triad types to include  
intransitive  X    
nearsimmelian  X    
simmelian  X    
simmelianties  X    
transitive  X    
transitiveties  X   attrname 
      
Actor-specific effects      
receiver  X   base 
sender  X   base 
sociality X    attrname, base 
      
Shared partner terms      
esp (edgewise shared ptnrs) X X  vec. of partner #s  
dsp (dyadwise shared ptnrs) X X X vec. of partner #s  
nsp (nonedge shared ptnrs) X X  vec. of partner #s  
gwesp X X  alpha fixed 
gwdsp X X X alpha fixed 
gwnsp X X  alpha fixed 
      
Paths      
towpath X X X   
threepath X X X   
 


