
 Statnet Tutorial – Sunbelt 2011 1

Introduction to Exponential-family Random Graph (ERG or p*)
modeling with statnet

INSNA Sunbelt – St. Pete Beach, Florida - Feb 2011

Carter T. Butts (University of California, Irvine) Joint with the rest of the Statnet Development Team:
Martina Morris (University of Washington) Mark S. Handcock (UCLA)
Pavel N. Krivitsky (Penn State University) David R. Hunter (Penn State University)
Zack Almquist (University of California, Irvine) Steven M. Goodreau (University of Washington)
 Skye Bender de-Moll (Oakland)

Table of contents

Section 0. Getting started

Section 1. The world’s shortest R tutorial

Section 2. A quick review of network objects: import, exploration, manipulation-

Section 1. Statistical network modeling; the ergm command and ergm object

Section 2. Model terms available for ergm estimation and simulation

Section 3. Network simulation: the simulate command and network.list objects

Section 4. Examining the quality of model fit – gof

Section 5. Diagnostics: troubleshooting and checking for model degeneracy

Section 6. Using ergm to fit and simulate from egocentrically sampled data (“egonetworks”) [NEW]

Section 8. Additional functionality in the statnet family of packages

Basic resources

R webpage: http://www.r-project.org
Helpful R tutorials: http://cran.r-project.org/other-docs.html
statnet webpage: www.statnet.org
statnet help: statnet_help@statnet.org

Typographical conventions

Text in Courier bold represents code for you to type.

Text in Courier regular represents R output.

Text after pound signs is a comment

All other text represents instructions and guidance.

Two other workshops
now cover this material

 Statnet Tutorial – Sunbelt 2011 2

SECTION 0. GETTING STARTED

Open an R session, and set your working directory to the location where you would like to save this work. You can do this
with the pull-down menus (File>Change Dir) or with the command:

setwd('full.path.for.the.folder')

To install all of the packages in the statnet suite:
install.packages('statnet')
library(statnet)

Or, to only install the specific statnet packages needed for this tutorial:
install.packages('network')
install.packages('ergm')
install.packages('sna')
library(network)
library(ergm)
library(sna)

After the first time, to update the packages one can either repeat the commands above, or use:
update.packages('name.of.package')

For this tutorial, we will need one additional package (coda), which is recommended (but not required) by ergm:
install.packages('coda')
library(coda)

SECTION 1. STATISTICAL NETWORK MODELING; THE ERGM COMMAND AND ERGM OBJECT.

Make sure the statnet package is attached:

library(statnet)

or

library(ergm)
library(sna)

The ergm package contains several network data sets that you can use for practice examples.

data(package='ergm') # tells us the datasets in our packages
data(florentine) # loads flomarriage & flobusiness data
flomarriage # Let’s look at the flomarriage data
plot(flomarriage) # Let’s view the flomarriage network

Remember the general ergm representation of the probability of the observed network, and the conditional log-odds of a tie:

 P(Y=y) = exp[θ′g(y)] / k(θ) # Y is a network, g(y) is a vector of network stats
 # θ is the vector of coefficients, k(θ) is a normalizing constant

 logit(P(Yij =1 | Yc)) = θ ′Δ(g(y))ij # Yij is an actor pair in Y, Yc is the rest of the network,
 # Δ(g(y))ij is the change in g(y) when the value of

Yij is toggled on

We begin with the simplest possible model, the Bernoulli or Erdös-Rényi model, which contains only an edge term.

 Statnet Tutorial – Sunbelt 2011 3

flomodel.01 <- ergm(flomarriage~edges) # fit model
flomodel.01 # look at the model

Newton-Raphson iterations: 5

MLE Coefficients:
 edges
-1.609

summary(flomodel.01) # look in more depth

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges

Newton-Raphson iterations: 5

Maximum Likelihood Results:
 Estimate Std. Error MCMC s.e. p-value
edges -1.6094 0.2449 NA <1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For this model, the pseudolikelihood is the same as the likelihood.

 Null Deviance: 166.355 on 120 degrees of freedom
 Residual Deviance: 108.135 on 119 degrees of freedom
 Deviance: 58.221 on 1 degrees of freedom

AIC: 110.13 BIC: 112.92

How to interpret this model? The log-odds of any tie occurring is:
 = -1.609 * change in the number of ties
 = -1.609 * 1 # for all ties, since the addition of any tie to the
 # network changes the number of ties by 1!
Corresponding probability is:

= exp(-1.609) / (1+ exp(-1.609))
 = 0.1667 # what you would expect, since there are 20/120 ties

Let’s add a term often thought to be a measure of “clustering” -- the number of completed triangles

flomodel.02 <- ergm(flomarriage~edges+triangle)

Note we’re in stochastic simulation now – your output will differ

flomodel.02 <- ergm(flomarriage~edges+triangle)
Iteration 1 of at most 20:
the log-likelihood improved by 0.001786
Iteration 2 of at most 20:
the log-likelihood improved by 0.0005837
Iteration 3 of at most 20:
the log-likelihood improved by 0.0001311
Iteration 4 of at most 20:
the log-likelihood improved by < 0.0001
Iteration 5 of at most 20:
Convergence detected. Stopping early.

 Statnet Tutorial – Sunbelt 2011 4

the log-likelihood improved by < 0.0001

This model was fit using MCMC. To examine model diagnostics and check for
degeneracy, use the mcmc.diagnostics() function.

summary(flomodel.02)

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges + triangle

Iterations: 20

Monte Carlo MLE Results:
 Estimate Std. Error MCMC % p-value
edges -1.6748 0.3518 0 <1e-04 ***
triangle 0.1557 0.5960 0 0.794

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood was not estimated for this fit.
To get deviances, AIC, and/or BIC from fit `flomodel.02` run
 > flomodel.02<-logLik(flomodel.02, add=TRUE)
to add it to the object or rerun this function with eval.loglik=TRUE.

Again, how to interpret coefficients?

Conditional log-odds of two actors forming a tie is:

 -1.673 * change in the number of ties + 0.139 * change in number of triangles

if the tie will not add any triangles to the network, its log-odds. is -1.673.
if it will add one triangle to the network, its log-odds is -1.673 + 0.139 = -1.534
if it will add two triangles to the network, its log-odds is: -1.673 + 0.139*2 = -1.395

the corresponding probabilities are 0.158, 0.177, and 0.199.

Let’s take a closer look at the ergm object itself:

class(flomodel.02) # this has the class ergm
[1] 'ergm'

names(flomodel.02) # let’s look straight at the ERGM obj.

 [1] "coef" "sample" "sample.obs" "iterations" "MCMCtheta"
 [6] "loglikelihood" "gradient" "covar" "failure" "mc.se"
[11] "network" "newnetwork" "coef.init" "initialfit" "coef.hist"
[16] "stats.hist" "null.deviance" "etamap" "formula" "target.stats"
[21] "constrained" "constraints" "control" "reference" "estimate"
[26] "offset" "drop" "estimable" “mle.lik”

flomodel.02$coef # the $ allows you to pull an element out from
flomodel.02$formula # a list
flomodel.02$mle.lik

 Statnet Tutorial – Sunbelt 2011 5

wealth <- flomarriage %v% 'wealth' # the %v% extracts vertex attributes from a
wealth # network
plot(flomarriage, vertex.cex=wealth/25) # network plot with vertex size

proportional to wealth

We can test whether edge probabilities are a function of wealth:

flomodel.03 <- ergm(flomarriage~edges+nodecov('wealth'))
summary(flomodel.03)

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges + nodecov("wealth")

Newton-Raphson iterations: 4

Maximum Likelihood Results:
 Estimate Std. Error MCMC s.e. p-value
edges -2.594929 0.536056 NA <1e-04 ***
nodecov.wealth 0.010546 0.004674 NA 0.0259 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For this model, the pseudolikelihood is the same as the likelihood.

 Null Deviance: 166.355 on 120 degrees of freedom
 Residual Deviance: 103.109 on 118 degrees of freedom
 Deviance: 63.247 on 2 degrees of freedom

AIC: 107.11 BIC: 112.68

Yes, there is a significant positive wealth effect on the probability of a tie.

data(samplk) # Let’s try a model or two on
ls() # directed data: Sampson’s Monks
samplk3
plot(samplk3)
sampmodel.01 <- ergm(samplk3~edges+mutual)# Is there a statistically significant
summary(sampmodel.01) # tendency for ties to be reciprocated

(“mutuality”)?
data(faux.mesa.high) # Let’s try a larger network
mesa <- faux.mesa.high
plot(mesa)
mesa
plot(mesa, vertex.col='Grade')
legend('bottomleft',fill=7:12,legend=paste('Grade',7:12),cex=0.75)

fauxmodel.01 <- ergm(mesa ~edges + nodematch('Grade',diff=T) +
 nodematch('Race',diff=T))

summary(fauxmodel.01)

Note that two of the coefficients are estimated as –Inf (the nodematch coefficients for race Black and Other). Why is this?

 Statnet Tutorial – Sunbelt 2011 6

table(mesa %v% "Race") # Frequencies of race
mixingmatrix(mesa, "Race")

So the problem is that there are very few students in the Black and Other race categories, and these students form no
homophilous (within-group) ties. The empty cells are what produce the –Inf estimates.

Time to consider some missing data:

missnet <- network.initialize(10,directed=F)
missnet[1,2] <- missnet[2,7] <- missnet[3,6] <- 1
missnet[4,6] <- missnet[4,9] <- NA
missnet
plot(missnet)
ergm(missnet~edges)

The coefficient equals -2.590. This is the logodds of the probability .0698. Our network has 3 ties, out of the 43 nodal pairs (10
choose 2 minus 2) whose dyad status we have observed. 3/43 = 0.0698.

ergm(missnet~edges+degree(2))

missnet[4,6] <- missnet[4,9] <- 0

ergm(missnet~edges+degree(2))

The two estimates for the degree2 coefficient differ considerably. In the first case, there is one node we know for sure has
degree 2, two that may or may not, and seven that we know for sure do not. In the latter, there is one node that has degree 2,
and nine that do not.

SECTION 2. MODEL TERMS AVAILABLE FOR ergm ESTIMATION and SIMULATION

Model terms are the expressions (e.g. “triangle”) used to represent predictors on the right-hand size of equations used in:

 calls to ergm (to estimate an ergm model)
 calls to simulate (to simulate networks from an ergm model fit)
 calls to summary (to obtain measurements of network statistics on a dataset)

4.1. Terms provided with ergm

For a list of available terms that can be used to specify an ERGM, see Appendix B, or type:

help('ergm-terms')

For a more complete discussion of these terms see the 'Specifications' paper in J Stat Software v. 24. (link is available online at
www.statnet.org)

4.2. Coding new terms

We have recently released a new package (ergm.userterms) and tutorial aimed at making it much easier than before to
write one's own terms. The package is available on CRAN, and installing it will also download the tutorial
(ergmuserterms.pdf). We teach a workshop at the Sunbelt meetings, and are also hoping for the tutorial to appear soon in the
Journal of Statistical Software. Note that writing up new ergm terms requires some knowledge of C and the ability to build R
from source (although the latter is covered in the tutorial).

 Statnet Tutorial – Sunbelt 2011 7

SECTION 3. NETWORK SIMULATION: THE SIMULATE COMMAND AND NETWORK.LIST OBJECTS.

Once we have estimated the coefficients of an ERGM, the model is completely specified. It defines a probability distribution
across all networks of this size. If the model is a good fit to the observed data, then networks drawn from this distribution will
be more likely to "resemble" the observed data. To see examples of networks drawn from this distribution we use the
simulate command:

flomodel.03.sim <- simulate(flomodel.03,nsim=10)

class(flomodel.03.sim)
[1] 'network.list'

summary(flomodel.03.sim)
Number of Networks: 10
Model: flomarriage ~ edges + nodecov("wealth")
Reference: Bernoulli
Constraints: ~.
Parameters:
 edges nodecov.wealth
 -2.59492903 0.01054591

Stored network statistics:
 edges nodecov.wealth
 [1,] 20 2089
 [2,] 25 2432
 [3,] 21 1897
 [4,] 27 2956
 [5,] 18 2094
 [6,] 24 2761
 [7,] 22 1926
 [8,] 14 1551
 [9,] 19 1857
[10,] 21 1878

length(flomodel.03.sim)
[1] 10

flomodel.03.sim[[1]] # double brackets pull an element
 # out of a list by position #
Network attributes:
 vertices = 16
 directed = FALSE
 hyper = FALSE
 loops = FALSE
 multiple = FALSE
 bipartite = FALSE
 total edges= 20
 missing edges= 0
 non-missing edges= 20

 Vertex attribute names:
 priorates totalties vertex.names wealth

plot(flomodel.03.sim[[1]], label= flomodel.03.sim[[1]] %v% “vertex.names”)

 Statnet Tutorial – Sunbelt 2011 8

Voilà. (Of course, yours will look somewhat different.)

 Statnet Tutorial – Sunbelt 2011 9

SECTION 4. EXAMINING THE QUALITY OF MODEL FIT – GOF.

ERGMs are generative models – that is, they represent the process that governs tie formation at a local level. These local
processes in turn aggregate up to produce characteristic global network properties, even though these global properties are not
explicit terms in the model. One test of whether a model "fits the data" is therefore how well it reproduces these global
properties. We do this by choosing a network statistic that is not in the model, and comparing the value of this statistic
observed in the original network to the distribution of values we get in simulated networks from our model.

flomodel.03.gof <- gof(flomodel.03~degree)

flomodel.03.gof
plot(flomodel.03.gof)

0 1 2 3 4 5 6 7 8 9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

degree

p
ro

p
o
rt
io

n
 o

f n
o
d
e
s

Goodness-of-fit diagnostics

mesamodel.02 <- ergm(mesa~edges)
mesamodel.02.gof <- gof(mesamodel.02~distance,nsim=10)
plot(mesamodel.02.gof)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 NR

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

minimum geodesic distance

pr
op

or
tio

n
 o

f d
ya

d
s

Goodness-of-fit diagnostics

(for a good example of model exploration and fitting for the Add Health Friendship networks, see Goodreau Kitts & Morris
Demography 2009)

 Statnet Tutorial – Sunbelt 2011 10

SECTION 5. DIAGNOSTICS: TROUBLESHOOTING AND CHECKING FOR MODEL DEGENERACY

The computational algorithms in ergm use MCMC to estimate the likelihood function. Part of this process involves
simulating a set of networks to approximate unknown components of the likelihood.

When a model is not a good representation of the observed network the estimation process may be affected. In the worst case
scenario, the simulated networks will be so different from the observed network that the algorithm fails altogether. This can
occur for two general reasons. First, the simulation algorithm may fail to converge, and the sampled networks are thus not from
the specified distribution. Second, the model parameters used to simulate the networks are too different from the MLE, so even
though the simulation algorithm is producing a representative sample of networks, this is not the sample that would be
produced under the MLE.

For more detailed discussions of model degeneracy in the ERGM context, see the papers in J Stat Software v. 24. (link is
available online at www.statnet.org)

We can use diagnostics to see what is happening with the simulation algorithm, and these can lead us to ways to improve it.
We will first consider a simulation where the algorithm works. To understand the algorithm, consider

fit <- ergm(flobusiness~edges+degree(1),
 control=control.ergm(MCMC.interval=1, MCMC.burnin=1000, seed=1))

This runs a version with every network returned. Let us look at the diagnostics produced:

mcmc.diagnostics(fit, center=F)

Let’s look more carefully at a default model fit:

fit <- ergm(flobusiness~edges+degree(1))

To see the diagnostics use:

mcmc.diagnostics(fit, center=F)

Now let us look at a more interesting case, using a larger network:

data('faux.magnolia.high')
magnolia <- faux.magnolia.high
plot(magnolia, vertex.cex=.5)

fit <- ergm(magnolia~edges+triangle,
 control=control.ergm(seed=1))
mcmc.diagnostics(fit, center=F)

Very interesting. You could have gotten some more feedback about this during the fitting, by using:

fit <- ergm(magnolia~edges+triangle,
 control=control.ergm(seed=1),
 verbose=T)

You might try to increase the MCMC sample size:

fit <- ergm(magnolia~edges+triangle,seed=1,
 control = control.ergm(seed=1, MCMC.samplesize=20000),
 verbose=T)
mcmc.diagnostics(fit, center=F)

Now, try it again with a sample size of 50,000.

 Statnet Tutorial – Sunbelt 2011 11

How about trying the more robust version of modeling triangles -- GWESP? (For a technical introduction to GWESP see
Hunter and Handcock; for a more intuitive description and empirical application see Goodreau Kitts and Morris 2009)

fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T),
 control = control.ergm(seed=1))
mcmc.diagnostics(fit)

Still degenerate, but maybe getting closer?

fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T)+nodematch('Grade')+nodematch('Race')+
 nodematch('Sex'),
 control = control.ergm(seed=1),
 verbose=T)

pdf('diagnostics1.pdf') #Use the recording function if possible, otherwise send to
pdf
mcmc.diagnostics(fit)
dev.off() #If you saved to pdf, look at the file

fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
 nodematch('Sex'),
 control = control.ergm(seed=1))

pdf('diagnostics2.pdf') #Ditto
mcmc.diagnostics(fit)
dev.off() #If you saved to pdf, look at the file

args(ergm)

fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
 nodematch('Sex'),
 control = control.ergm(seed=1,MCMC.samplesize=50000,MCMC.interval=1000),
 verbose=T)
pdf('diagnostics3.pdf') #Ditto
mcmc.diagnostics(fit)
dev.off() #If you saved to pdf, look at the file

Success! Of course, in real life one might have a lot more trial and error.

 Statnet Tutorial – Sunbelt 2011 12

SECTION 6. WORKING WITH EGOCENTRICALLY SAMPLED NETWORK DATA

In many empirical contexts, it is not feasible to collect a network census or even an adaptive (link-traced) sample. Even when
one of these may be possible in practice, egocentrically sampled data are typically cheaper and easier to collect.

Long regarded as the poor country cousin in the network data family, egocentric data contain a remarkable amount of
information. With the right statistical methods, such data can be used to explore the properties of the complete networks in
which they are embedded. The basic idea here is to combine what is observed, with assumptions, to define a class of models
that describe the distribution of networks that are centered on the observed properties. The variation in these networks
quantifies some of the uncertainty introduced by the assumptions.

Let’s start with a simple fictional example: You have a sample of persons who were asked about the friends they had seen
face-to-face more than once in the last week. The respondent was asked their own sex, and the sex of each friend (for up to
three friends). Summary statistics from these data thus include the sex distribution, the degree distribution (it could be broken
down by sex, but we will just examine the marginal distribution here), and the joint distribution of the respondent and friend’s
sex (the sex mixing matrix). Let’s assume there are equal numbers of men and women in the sampled respondents. The other
distributions are shown below:

Degee distribution (number of friends seen > once)

Sex Mixing Matrix

Degree Frequency Fraction Ties

0 180 0.36 0

1 245 0.49 245

2 60 0.12 120

3 15 0.03 45

Total 500 1.00 410

Friend's sex

M F Total

Respondent
Sex

M 164 44

F 26 176

Total 410

So, total N respondents = 500, total N friends reported = 410.

We can use an ERGM to fit the parameters associated with these observed statistics, then use the fitted model to simulate
complete networks that are drawn from the distribution of networks that is centered around these statistics. As a theoretical
exercise, this provides a method for investigating the complete network implications of these observed summary statistics. As
an empirical exercise, the primary assumption needed for inference is that the data we have is sampled from a population in
equilibrium (and, as in all statistical inference, that our model is correct). The theory for this is developed in Krivitsky, 2009.

We need to make assumptions about size, directedness and bipartite-ness when we model and simulate the complete network.

 Size: any size can be simulated, but if the model is fit using the observed frequencies, it should be used to simulate a
population of that size, unless a size adjustment is made in the simulation (see Krivitsky, Handcock and Morris
2011). We are going to work with a population size 500 here, equal to the number of respondents.

 Directedness: Ego data are in one sense inherently directed (respondents nominate alters, alters are not observed), but
the relationship may be either. In this case (“seen more than once”) it is undirected, so we will fit and simulate an
undirected network.

 Bipartite: Ego data can be bipartite (if no alters are also respondents, or data are collected on 2-mode networks) or
not (if respondents are also alters). But again, the relationship may be either. “Seen” is undirected, and we will fit
and simulated and undirected network.

In sum, we will simulate a one-mode, undirected network of size 500, assuming the ego statistics we observed contain the
information we need to calculate the statistics that would have been observed in a self-contained population of that size, noting
that other assumptions are possible.

To ensure consistency between the degree distribution (which is a tabulation of nodes) and the mixing matrix (which is a cross-
tabulation of ties) in our simulated “complete network,” it is important to recognize that in a complete network, the degree
distribution should imply twice the number of ties observed in the mixing matrix, because every tie is being reported by both

 Statnet Tutorial – Sunbelt 2011 13

nodes in the degree distribution. If we are fixing the population size at 500 in this simulation, then our observed mixing matrix
data needs to be divided by 2.

Start by initializing an empty network of the desired size and assign the “sex” attribute to the nodes:

ego.net <- network.initialize(500, directed=F)
ego.net %v% 'sex' <- c(rep(0,250),rep(1,250))

Set up the observed statistics (adjusted for this “complete” network) as we will use them to assess the accuracy of the
simulation later:

ego.deg <- c(180, 245, 60, 15) # node distn
ego.mixmat <- matrix(c(164,44,26,176)/2, nrow=2, byrow=T) # adjusted tie distn

Then, pick the observed statistics you want to target – we will start with a simple model here: the total number of ties (edges),
and the number of sex-matched ties (homophily). These are both functions of the observed statistics:

ego.edges <- sum(ego.mixmat)
ego.sexmatch <- ego.mixmat[1,1]+ego.mixmat[2,2]

And combine these into a vector

ego.target.stats <- c(ego.edges, ego.sexmatch)
ego.target.stats

Now, fit an ERGM to this “network”, with terms for the statistics you want to match, and the “target.stats” argument for ergm
that specifies the target values for those statistics:

ego.fit <- ergm(ego.net ~ edges + nodematch('sex'),
 target.stats = ego.target.stats)

Iteration 1 of at most 20:
Convergence detected. Stopping early.
the log-likelihood improved by 0.0001152

This model was fit using MCMC. To examine model diagnostics and check for
degeneracy, use the mcmc.diagnostics() function.

summary(ego.fit)

==========================
Summary of model fit
==========================

Formula: nw ~ edges + nodematch("sex")
<environment: 0x0f83a7ac>

Iterations: 20

Monte Carlo MLE Results:
 Estimate Std. Error MCMC % p-value
edges -7.4889 0.1689 0 <1e-04 ***
nodematch.sex 1.5877 0.1822 0 <1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Null Deviance: 172940.2 on 124750 degrees of freedom

 Statnet Tutorial – Sunbelt 2011 14

 Residual Deviance: 2940.7 on 124748 degrees of freedom
 Deviance: 169999.5 on 2 degrees of freedom

AIC: 2944.7 BIC: 2964.2

Take a look at the fitted model:

summary(ego.fit)

summary(ego.fit)

==========================
Summary of model fit
==========================

Formula: nw ~ edges + nodematch("sex")

Iterations: 20

Monte Carlo MLE Results:
 Estimate Std. Error MCMC % p-value
edges -7.4889 0.1689 0 <1e-04 ***
nodematch.sex 1.5877 0.1822 0 <1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Null Deviance: 172940.2 on 124750 degrees of freedom
 Residual Deviance: 2940.7 on 124748 degrees of freedom
 Deviance: 169999.5 on 2 degrees of freedom

AIC: 2944.7 BIC: 2964.2

Now that you have a fitted model, you can simulate a complete network from it, and look at the results:

ego.sim1 <- simulate(ego.fit)
plot(ego.sim1, vertex.cex=.65, vertex.col="sex")

Does it reproduce the observed degree and mixing frequencies?

rbind(summary(ego.sim1 ~ degree(c(0:3))), ego.deg)

 degree0 degree1 degree2 degree3
 204 199 71 20
ego.deg 180 245 60 15
mixingmatrix(ego.sim1, "sex")

We only targeted the total number of edges,
not the full degree distribution

 Statnet Tutorial – Sunbelt 2011 15

Note: Marginal totals can be misleading
 for undirected mixing matrices.
 0 1
0 95 37
1 37 81
> ego.mixmat
 [,1] [,2]
[1,] 82 22
[2,] 13 88

The simulation stats seem quite different than the observed stats, and there are two possible reasons: either we mis-specified
the original model (bias), or this one random draw may be unrepresentative of the distribution described by the model
(variance). The latter is easily examined by simulating 100 networks, to see where the observed data fall in the distribution of
networks produced by the model:

ego.sim100 <- simulate(ego.fit, nsim=100)
ego.sim100

Number of Networks: 100
Model: nw ~ edges + nodematch("sex")
Constraints: ~.
Parameters:
 edges nodematch.sex
 -7.488886 1.587689

More information can be obtained with

summary(ego.sim100)

First, we’ll look at how well the simulations reproduced the target statistics that were included in the model (note, not the
observed full distributions):

sim.stats <- attr(ego.sim100,"stats")
rbind(colMeans(sim.stats), ego.target.stats)

 edges nodematch.sex
 203.06 169
ego.target.stats 205.00 170

These look pretty good – the means of the simulated target stats are within 1% of the observed. We can plot the 100 replicates
to see check the variation for any problematic patterns:

matplot(1:nrow(sim.stats), sim.stats,
 pch=c("e","m","0","+"), cex=.65,
 main="100 simulations from ego.fit model", sub="(default settings)",
 xlab="Replicate", ylab="frequency")
abline(h=ego.target.stats, col=c(1:4))

We only targeted the number of same-sex ties,
not the full mixing matrix

 Statnet Tutorial – Sunbelt 2011 16

e

e
ee

e

e
e

e

e

e

e

eee

e

ee

ee
e

e

e

e

ee

e
e

e

e

e

e

e
e
e
e

e
e
e

e

e

e

e

e

e

ee

e

e

ee

e

e

ee

e

e
e

e

e

e
e

e

e

eee

e
ee

e

e

e

e
ee

e

e

e

e

e

e

e

ee

e

ee

ee
e

ee

e
e

e

e
e

e

e
e

0 20 40 60 80 100

16
0

1
8

0
2

0
0

2
2

0
2

40
100 simulations from ego.fit model

(default settings)
Replicate

fr
e

q
u

en
cy

m

mmm

mm

m

m

m

m
mm

m
m

m

mm

mm
m

m

m

m

m
mmm

m
m

m

m

m

m
mm

mm

m

m

m

m

m
m
m

m
m

m

m

mm
m
m

mm

m

m

m

m

m

m
m

m

m
mm

m

m
mm

m

m

m

m
mm

m

m
m

m

m

m

m
m

m

m

m

m

m
m

mmm

m

m

m

m
m

m

mm

The lines mark the target statistic frequencies in the
observed data. The points represent the frequencies in the
simulated networks.

The simulated network statistics vary stochastically around
the target values, not trending over time.

But – there is clear autocorrelation across the replicates,
which suggests we might want to increase the MCMC
interval to draw more independent realizations.

ego.sim100 <- simulate(ego.fit, nsim=100,
 control=control.simulate.ergm(MCMC.interval=10000))

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

ee

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e
e

ee

e

e

e

e

e

0 20 40 60 80 100

1
4

0
1

6
0

1
8

0
2

0
0

2
2

0

100 simulations from ego.fit model

(MCMC.interval=10000)
Replicate

fr
e

q
u

e
n

cy

m
m

m

m

m

m
m

m

m
m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m
m

mm
m
m

m

m

m

m

m

m

mm

m

m

m

m

m

m

m

m

m

m

m

m

mmm

m

m

m

m

m

m

m

m

m

m

m
m

m

m

m

m

m

m

m
mm

m

m

m

m

m

m

m

m

m
m

m

m

m

m

mm

m

m
m

m

m

m

m

With the larger interval, the autocorrelation is no longer
detectable, and all of the statistics from the simulated
networks vary in a symmetric band around their targets.

The variation (about +/- 10%) represents the range of
target statistics that are consistent with the fitted
coefficients.

If you wanted instead to constrain these statistics to equal
a specified value, then you can use the “constraints=”
argument during the ergm fit instead.

This is good for verifying that the simulation reproduces the target values we specified. So now let’s see whether the simulated
complete networks also match statistics that were not set by the targets. We targeted edges and homophily. How well does
this model reproduce the full degree distribution?

sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10)))
sim.fulldeg
 degree0 degree1 degree2 degree3 degree4 degree5 degree6 degree7 degree8 degree9 degree10
 [1,] 198 190 81 26 5 0 0 0 0 0 0
 [2,] 207 177 81 33 2 0 0 0 0 0 0
 [3,] 201 178 87 29 4 1 0 0 0 0 0

 Statnet Tutorial – Sunbelt 2011 17

 [4,] 207 173 86 27 7 0 0 0 0 0 0
 [5,] 219 168 80 26 7 0 0 0 0 0 0
 …

Recall that the degree range in our data was [0,3] by design, but we did not constrain the simulations to this range. If our
model correctly captured the processes that led to the aggregate statistics we observe in our data, the simulated networks would
show us what we missed. Here the simulated networks suggest that the fully observed network would have a wider range of
degrees, which we might have observed, had we not truncated the data collection at 3 friends per respondent. About 1% of
nodes have degree 4 or 5, and the max observed is 6.

But did our model did correctly capture the underlying processes? How well does the simulated degree distribution from this
model match the frequencies we did observe? Aggregating the degrees of 3 or more in the simulations, we find:

sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))
colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+")
rbind(colMeans(sim.deg),ego.deg)

 degree0 degree1 degree2 degree3+
 223.97 176.47 74.87 24.69
ego.deg 180.00 245.00 60.00 15.00

As with the single simulation above, the discrepancies between the simulation averages and the observed statistics are quite
large. We can see this more clearly by plotting the degree frequencies for the 100 replicate networks we simulated:

matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,
 main="Comparing ego.sims to non-targeted degree frequencies",
 sub = "(only total edges targeted)",
 xlab = "Replicate", ylab = "Frequencies")
abline(h=c(180, 245, 60, 15), col=c(1:4))

0

0
0
0

0
00

00

0

0

00

0
0

0

0
0

0

0
0

0

0
0

0
0

0

00
00

0
0

0
000

00

0

00
0
0

00

0
000

0

0

0

0

00
0

0

0
00

0
00

0
0

0
0

00

0
0
0

0

0
0

0

0
00

0
000

0

0
0

0
0
0

00

00
0

0
0

0
0

0

0 20 40 60 80 100

50
10

0
15

0
2

0
0

2
5

0

Comparing ego.sims to non-targeted degree frequencies

(edges+nodematch only)
Replicate

F
re

q
u

e
n

ci
e

s

1

11
1

1

1

1

11

11

1
1

1
11

1

1

1

1
1
1

1
1

1
1

1
1

11
1

1

1
1
1

1

1
1

1

1
11

11

1

1
1

1
11

1

1

11

1
1
11

1
1

1
11

1

1
1

1
111

1
1
1

1

11

1
1

1

11

11
1

1

1
1

1
11

1

1
1

11
1
1

11

1

22
22

2

2

22
2

2
2

22
22

22

2

2
22

22

2
2

22

22

2

2
2
222

2

2

2

22
22222

2

2

2
2
2
2

2
2

2
2

2
2

2
2
2

2

22

2
22

2
2

2

2

2
22

2
2

2
222

2

2
2

2
222

222
2
2

22
2
22

2

2
22

3
3333

33
3
3

3

33
33

3
33

3
333

3
3
3

3
3

33

3
3
3

3
33

33
3

333
3

33
3333

3
3
333

3

33
3
3

33
33

33
3

3
3

3
3

3

3

3
333333

333
33

3
3333

333

3333
3

3

3

33
3

The simulations are producing systematically more
isolates than expected (the “0” points vs. the black line),
and systematically more degree 1 nodes. In fact, the two
degree frequencies are essentially reversed in the
simulation.

The fraction of nodes with 2 or 3+ partners is
systematically off but by a much smaller amount.

So our observed network has fewer isolates than
expected in a network of this density, more degree 1
nodes than expected, and fewer degree 2 and 3+ nodes.

This suggests the model is mis-specified. Since the degree 0 vs. degree 1 is the worst fitting aspect, we will try using the
number of isolates as a target statistic in the model.

 Statnet Tutorial – Sunbelt 2011 18

ego.isolates <- ego.deg[1]
ego.target.stats <- c(ego.edges, ego.sexmatch, ego.isolates)
ego.fit <- ergm(ego.net ~ edges + nodematch('sex') + degree(0),
 target.stats = ego.target.stats)
summary(ego.fit)

==========================
Summary of model fit
==========================

Formula: nw ~ edges + nodematch("sex") + degree(0)

Iterations: 20

Monte Carlo MLE Results:
 Estimate Std. Error MCMC % p-value
edges -8.4012 0.2462 1 <1e-04 ***
nodematch.sex 1.5821 0.1854 1 <1e-04 ***
degree0 -0.9601 0.1590 0 <1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Null Deviance: 172940.2 on 124750 degrees of freedom
 Residual Deviance: 2902.9 on 124747 degrees of freedom
 Deviance: 170037.3 on 3 degrees of freedom

AIC: 2908.9 BIC: 2938.1

Simulating from this model, the target statistics are again well matched:

ego.sim100 <- simulate(ego.fit, nsim=100,
 control=control.simulate.ergm(MCMC.interval=10000))
sim.stats <- attr(ego.sim100,"stats")
rbind(colMeans(sim.stats), ego.target.stats)
 edges nodematch.sex degree0
 205.61 169.99 178.79
ego.target.stats 205.00 170.00 180.00

And the full degree frequencies look much better:

sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10)))
sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))
colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+")
rbind(colMeans(sim.deg),ego.deg)
 degree0 degree1 degree2 degree3+
 178.79 245.2 63.65 12.36
ego.deg 180.00 245.0 60.00 15.00

 Statnet Tutorial – Sunbelt 2011 19

and finally, plotting the full degree frequencies

matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,
 main="Comparing ego.sims to non-targeted degree frequencies",
 sub = "(only 0, 2+ and total edges targeted)",
 xlab = "Replicate", ylab = "Frequencies")
abline(h=c(180, 245, 60, 15), col=c(1:4))
save.image() #to save your workspace for later

0

0

0

0

0

0

00

0

0

00

0

0

0

0

0

0

0

00
0

0

0

0

0

0

0

0

0

0

0

0

0

00
0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

0

00

0
00

0

0

0

0

0

0

0
0

0

0
0

00

0

0

000

0

0
0
0

0

0
0

0

0

0
0

0

0

0

0

0
00

0

0

0

0

0

0 20 40 60 80 100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Comparing ego.sims to non-targeted degree frequencies

(edges + nodematch + isolates)
Replicate

F
re

q
u

e
n

ci
e

s

1

1
1
1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

11
1

11

1

1

11

1

1

1

1

1

1

1

1

1
1

1
1

11

1

1

11

1
1

1

11

11

1

1

1

1
11

1

1

1

1

1
1
1

1

1

1
1

1

1

1

111

1

1

1
1

1

1

11
1

1
1

111

1
1

11

1

1

1

1
1

1

2

2

2

22

2

2

22
2
22

2

2
2

22
22

22

2
22

22

2

222

2

2
22

2
2

2

2

2

2
22

2

2

2

2
2

2

22

2

2

22

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2
2

2

22

2

2
22

2

22
2

2

2

2

2

2
2

2

22

2

2

2
2222

33
3
3

3
33333

3

33
333

3
333333

3
33333333

33
33

3
3
333333

3

33333
3

33
333

3
3
33

3
33

3

3
3

3333
3

33
333

3
333

33

33
33

3
33

3
3

3
33

3

33
3
33

The degree frequencies in these simulated networks are now
well centered on the observed frequencies. So adding the one
additional parameter to capture the lower than expected
number of isolates did a good job of capturing how our
observed network deviates from a random network with this
density.

The fraction of nodes with 3+ partners produced by our new
model might still be a bit low.

Moral: We can use ERGMs to estimate network models using target statistics from egocentrically sampled data. The fact that
the target statistics are reproduced by this model does not guarantee that additional features of the network would also be
reproduced. But starting with simple models can help to identify whether and how the aggregate statistics we observe from
an egocentric sample deviate from those we would expect from the model. If we fit all of the observed statistics without a
saturated model, we cannot reject the hypothesis that this model produced the network we sampled from.

We can also use this approach to explore network statistics that are not visible at all from the egocentric data, e.g., the geodesic
distribution, betweenness, etc., but it must always be remembered that the distributions we will produce are based on our
model. They faithfully reproduce the model, but that does not mean that the model faithfully represents the population.

In the STERGM workshop, we show how complete dynamic networks also can be simulated over time on the basis of
egocentric data like these, with the minimal addition of a single estimate of partnership duration. For a movie of an example
dynamic simulation used to explore the impact of network structure on HIV transmission, see statnet.org/movies.

 Statnet Tutorial – Sunbelt 2011 20

SECTION 8. ADDITIONAL FUNCTIONALITY

8.1. Additional functionality

The statnet suite of packages currently contains many additional features not covered in this tutorial:

 tools for fitting dynamic network models (stergm, in the ergm base package)
 tools for fitting relational event models (relevent package)
 curved exponential family estimation and simulation (ergm base package)
 latent space and latent cluster analysis (latentnet package)
 network permutation models (netperm package)
 MLE estimation for degree distributions (negative binomial, Poisson, scale-free, etc.) (degreenet package)
 analysis of bipartite networks (network package)
 simulation of bipartite networks with given degree distributions (networksis package)
 hierarchical ERGMs (hergm package)

Any of these not in the ergm base package are in stand-alone packages that can be downloaded either from CRAN, or from the
statnet website. For more detailed information, please visit the statnet webpage (http://statnet.org).

8.2. Additional functionality in development:

 ERGMs for valued ties – expected later 2012
 Temporal ERGMs (TERGMs) for longitudinal network panel data, and other temporal extensions – expected later

2012
 Temporally extended (vertex and edge) attributes for TERGMS – expected later 2012
 Network movie maker: ndTV – functionality previewed in STERGM workshop this year, CRAN release expected

later 2012

8.3. Statnet Commons: The development group

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Skye Bender-deMoll <skyebend@skyeome.net>,
Martina Morris <morrism@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>

 Statnet Tutorial – Sunbelt 2011 21

References:

Goodreau, S., J. Kitts and M. Morris (2009). "Birds of a Feather, or Friend of a Friend? Using Statistical Network Analysis to

Investigate Adolescent Social Networks." Demography 46(1): 103–125.
Handcock, M. S., D. R. Hunter, C. T. Butts, S. M. Goodreau and M. Morris (2008). "statnet: Software Tools for the

Representation, Visualization, Analysis and Simulation of Network Data." Journal of Statistical Software 42(01).
Krivitsky, P.N. Statistical Models for Social Network Data and Processes. PhD thesis, University of Washington, Seattle, WA,

August 2009.
Krivitsky, P. N., M. S. Handcock and M. Morris (2011). "Network Size and Composition Effects in Exponential-Family

Random Graph Models." Statistical Methodology forthcoming.

Appendix A: Clarifying the terms – ergm and network

You will see the terms ergm and network used in multiple contexts throughout the documentation. This is common in R, but
often confusing to newcomers. To clarify:

ergm

 ERGM: the acronym for an Exponential Random Graph Model; a statistical model for relational data that takes a
generalized exponential family form.

 ergm package: one of the packages within the statnet suite
 ergm function: a function within the ergm package; fits an ERGM to a network object, creating an ergm object in the

process.
 ergm object: a class of objects produced by a call to the ergm function, representing the results of an ERGM fit to a

network.

network

 network: a set of actors and the relations among them. Used interchangeably with the term graph.
 network package: one of the packages within the statnet suite; used to create, store, modify and plot the

information found in network objects.
 network object: a class of object in R used to represent a network.

Appendix B: Table of existing statnet terms
(see also: Morris, M., D. Hunter and M. Handcock (2008). "Specification of Exponential-Family Random Graph Models:

Terms and Computational Aspects." Journal of Statistical Software 42(i04).

Term Undir? Dir? Bip? Required Args Optional Args

Basic terms
edges X X X
density X X X
mutual X
asymmetric X
meandeg X X X

Nodal attribute terms
nodecov (aka nodemain) X X X attrname
nodefactor X X X attrname
nodeifactor X attrname
nodeofactor X attrname
nodeicov X attrname
nodeocov X attrname

 Statnet Tutorial – Sunbelt 2011 22

nodemix X X X attrname
nodematch (aka match) X X X attrname
absdiff X X X attrname
absdiffcat X X X attrname
b1factor X attrname base
b2factor X attrname base
smalldiff X X X attrname, cutoff

Relational attribute terms
edgecov X X X network or attrname
dyadcov X X X network or attrname
hamming X X X network or attrname
hammingmix X network or attrname base

Degree terms
degree X vec. of degrees by
idegree X vec. of degrees by
odegree X vec. of degrees by
b1degree X vec. of degrees by
b2degree X vec. of degrees by
gwdegree X decay fixed
gwidegree X decay fixed
gwodegree X decay fixed
gwb1degree X decay fixed
gwb2degree X decay fixed
isolates X X X
concurrent X by
b1concurrent X by
b2concurrent X by
degcor X
degcrossprod X
adegcor X
rdegcor X
indegreepopularity X
outdegreepopularity X

Star terms
kstar X X vec. of star sizes attrname
istar X vec. of star sizes attrname
ostar X vec. of star sizes attrname
b1star X vec. of star sizes attrname
b2star X vec. of star sizes attrname
b1twostar X b1attrname, b2attrname base
b2twostar X b1attrname, b2attrname base
b1starmix X k, attrname base, diff
b2starmix X k, attrname base, diff
m2star X
altkstar X X X lambda fixed

Cycle and triangle terms
triangle (aka triangles) X X attrname
ctriple (aka ctriad) X attrname
ttriple (aka ttriad) X attrname
tripercent X X attrname
cycle X X vec. of cycle sizes
localtriangle X X network or attrname
balance X X

 Statnet Tutorial – Sunbelt 2011 23

triadcensus X X triad types to include
intransitive X
nearsimmelian X
simmelian X
simmelianties X
transitive X
transitiveties X attrname

Actor-specific effects
receiver X base
sender X base
sociality X attrname, base

Shared partner terms
esp (edgewise shared ptnrs) X X vec. of partner #s
dsp (dyadwise shared ptnrs) X X X vec. of partner #s
nsp (nonedge shared ptnrs) X X vec. of partner #s
gwesp X X alpha fixed
gwdsp X X X alpha fixed
gwnsp X X alpha fixed

Paths
towpath X X X
threepath X X X

