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Model frameworks
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Two poles of epidemic modeling:
▪ Deterministic compartmental models

▪ Stochastic network models

In between lie all sorts of alternatives
▪ Deterministic individual-based models (not really a thing)

▪ Stochastic compartmental models (see appendix)

▪ Stochastic individual-based contact models (“ICMs”)

Let’s take a quick look at the ICMs: our poker chip example
▪ Before moving on to stochastic network models

For mechanistic models



What makes a model stochastic?
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The transition parameters 

that govern the “flows” of elements between states

▪ In a deterministic model these are fixed rates

◼ Applied to aggregate stocks in the compartments

▪ In a stochastic model these are probabilities

◼ Applied to individual elements



What does stochastic mean?
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◼ In general:  random, or variable

◼ In particular:
◼ A random draw

◼ From the possible range of outcome values

◼ With a probability assigned to each value

◼ Typically, the probabilities are summarized by 
◼ a probability density function (PDF)

◼ defined by one or more parameters

◼ Ex.:  binomial, Poisson, normal, etc.



Formalizing the poker chips
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◼ Represent each model as an ICM

▪ Identify the possible stochastic components
◼ And some typical probability distribution choices

▪ Identify what was stochastic in our poker chip example
◼ And what we left deterministic

◼ NOTE:  We won’t be coding these models
▪ But like DCMs, it’s good to know the basics here

▪ So follow the concepts, not the details



First step for all individual based models:
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◼ Set the initial conditions
▪ Create the individual elements

▪ And assign their state
◼ For poker chips, just their state of infection

◼ But you can imagine assigning other attributes…

◼ Compared to DCMs
▪ Here, elements will always be whole units (not fractional)

▪ And the state of each unique element is known at each 
timestep



Stochastic “constant growth” model
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◼ One transition:  “infection”
▪ … more like a non-infectious chronic disease incidence

◼ For the poker chip example:  
▪ a fixed, deterministic rate of new cases

◼ To make this model stochastic
▪ Draw the incidence at each step from a distribution

◼ Range:  positive integers (Z+), no fixed maximum (infinite population)

◼ Distribution options:  
◼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) is the natural choice

◼ Not 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛; 𝑝) (why not?)



Poisson distribution
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◼ Used for counts of events when:
▪ n (the number of trials) is large, not fixed, 

▪ and p (the probability of success) is small, so the product 𝑛𝑝 = 𝜆
approximates a rate of events (e.g., per time unit, or per capita)

8

𝑓(𝑥; 𝜆) = 𝑃(𝑋 = 𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!

𝜇𝑋 = 𝜎𝑋
2 = 𝜆

Note:  variance=mean



Impact of stochasticity on epidemic dynamics?
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Using the Poisson distribution:

◼ Expected number of new cases each day is 𝜆
▪ With poker chips we had a deterministic 1 new case per day

▪ With stochastic model we set 𝜆 = 1, the average number of new cases

◼ Variance in new cases each day is 𝜆

▪ Standard deviation = 𝜆

◼ Does not change the basic shape of the time series
▪ Still basically linear

▪ Just has some variation



Comparison for constant growth
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Deterministic Stochastic



Stochastic I model
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◼ Still just one transition:  “infection”
▪ But now incidence depends on prevalence

◼ For the poker chip example, 
▪ A prevalence-dependent deterministic rate

◼ To make this model stochastic
▪ Draw the incidence at each step from a distribution

◼ Range:  Z+, no fixed maximum (infinite population)

▪ But now the rate parameter is time-dependent (depends on I(t))
◼ Distribution options:  

◼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝒊(𝒕)) is again the natural choice, for the same reason

◼ 𝑖(𝑡) is an integer, not an aggregate, possibly fractional, value



What impact would this have?
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◼ Expected number of new cases each day is 𝜆𝑖(𝑡)

▪ Again translating from poker chips:  We set 𝜆 = 1

◼ think about this, what might 𝜆 represent now?

◼ Does not change the basic shape of the time series

▪ Still basically exponential

▪ With some variation



Comparison for I Model
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Deterministic Stochastic



Key idea: Interpreting variability
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◼ Note how different the runs can be
▪ If you saw these differences across communities

▪ You might think they had wildly different underlying 
epidemic dynamics

◼ Stochastic variation can be large
▪ At the beginning of an epidemic

▪ Or in small populations

◼ Be careful not to over-interpret!



Stochastic SI model (now it gets interesting)
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◼ Still just one transition:  infection

◼ But now we have a finite population (the bag)

◼ So pop’n incidence depends on three things (at minimum):

▪ 𝑠 𝑡 and 𝑖(𝑡):  Drawing an SI pair at time t

▪ 𝑎(𝑡):  The number of acts at each time step (SI pairs drawn)

▪ m(𝑎):  Transmission per act 



Stochastic SI model
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◼ To make this model stochastic

◼ Draw one or more of the components from a distribution

Component Attributes Distribution*

SI pair
Draw two chips without 
replacement from a finite 
population

𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(1, 𝑆 𝑡 , 𝐼 𝑡 , 2)

See appendix for derivation, 
approximately 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 for large n

𝑎(𝑡)
Z+, may or may not have 
fixed maximum

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 Τ𝑛 2 , 𝛼 /( Τ𝑛 2)
if max is 1 act per pair

𝑚(𝑎) {0,1}, like a coin flip 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜏)

* See Wikipedia for definitions



SI poker chip exercise
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◼ What component(s) did we make stochastic?

Component Stochastic or Deterministic? Value or Distribution

SI pair

𝑎(𝑡)

𝑚(𝑎)

deterministic Fixed at 1 per day

stochastic Hypergeometric

deterministic Fixed at 1 for all acts

Just this



SI model comparison
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◼ You’ll run this in the next lab



Finally, the SIR model
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Now there are two transitions

▪ Infection, which drives incidence

◼ As before

▪ Recovery, which drives the prevalence of immunity

◼ For each infected case, whether it recovers at this timestep 

◼ 𝑟(𝑡)



Stochastic SIR model
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◼ Add another component to the SI list

Component Attributes Distribution

SI pair
Draw two chips without 
replacement from a finite 
population

𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐
Not approx. 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝 for large n, 

see appendix

𝑎(𝑡) Z+, optional maximum
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

if max is 1 act per pair

𝑚(𝑎) {0,1}, like a coin flip 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜏)

r(t)

{0,1}, a coin flip (at each 
time step)
Or Z+ if D drawn at time 
of infection

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(ρ)

or 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐷 = 1/ρ)



SIR poker chip exercise
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◼ What component(s) did we make stochastic?

Component Stochastic or Deterministic? Value or Distribution

SI pair

𝑎(𝑡)

𝑚(𝑎)

D

deterministic Fixed at 1 per day

stochastic Hypergeometric

deterministic Fixed at 1 for all acts

Still

just this

deterministic Fixed at 10 days



DCM SIR model (by comparison)
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◼ The flows are:

▪ Incidence t = 𝛼𝜏 ∗
𝑠 𝑡 𝑖 𝑡

𝑛

▪ Recoveries t = ρ ∗ 𝑖(𝑡)

◼ In both flows
▪ The parameters are rates, not probabilities

▪ Applied to aggregate compartment stocks, which may be fractional

▪ The outcome flow values can also be fractional

And at each point in the time series the outcome values are always the same

rates *    aggregate values



How are ICMs implemented?23
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A simple algorithm
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At least it’s simple for the poker chips:

▪ Replicate each step

▪ In a line of code



ICM SIR pseudocode
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# Initial conditions

# create individuals

# assign status (S, I)

# Simulate epidemic

for (at=1:num.timesteps) {

# infection

# draw the number of acts for that step

# draw 1 pair of elements for each act

# filter to just the discordant SI pairs

# flip coin for each pair to determine transmission (or not)

# do bookkeeping for new infections

# recovery

# identify infected elements

# flip coin for each case to determine recovery

# do bookkeeping for recoveries

}

# process output



ICM SIR code

NME Workshop 26

◼ The appendix to this slideset has some actual code

▪ It’s the code used in the EpiModel epiweb(icm) shiny app

▪ All fits on one page (albeit in small type)

◼ You’ll use the epiweb(icm) shiny app in the next lab

▪ It’s a GUI, so you won’t see the code

▪ But now you know what’s going on behind the curtain ☺

◼ We’ll move on to network models after the lab

▪ After a break for mid-day



Summary
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◼ Stochastic ICMs replace 

▪ aggregate stocks with individual elements

▪ fixed rates with draws from a probability distribution

◼ There can be a mix of rates and probabilities

◼ Key benefits

▪ Insight into the inherent variability in a process

◼ Highest at the beginning of an epidemic, and in small populations

▪ More control over “heterogeneities” 

◼ In both elements and transition processes



With EpiModelWeb

To the ICM lab28
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1. Stochastic compartmental models
2. Hypergeometric distribution derivation
3. Stochastic iCM code from epiweb(icm)

Appendices29
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All about the transitions

1. Stochastic Compartmental Model30
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Stochastic compartmental model
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◼ This is not a common framework

◼ But it’s useful for understanding the continuum

▪ From purely deterministic, to purely stochastic

◼ And it does provide one way to generate variability 
in DCM outputs

▪ Variability helps you quantify your uncertainty



Stochastic compartmental model
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◼ How can you make a compartmental model stochastic?

▪ By making the transition rate parameters or “flows” in the model stochastic

◼ Consider a simple proportional growth model

▪ States:  only I is tracked; population has an infinite number of susceptibles

▪ Transition rate parameters: only , the average growth rate of infection

◼ As a compartmental model, this would be:

𝑖 𝑡 + 1 = 𝑖 𝑡 + 𝛽𝑖 𝑡 so:

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑡 = 𝑖 𝑡 + 1 − 𝑖 𝑡 = 𝛽𝑖 𝑡



Stochastic compartmental model
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Deterministic

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑡 = 𝛽𝑖(𝑡)

Fixed rate of new infections per

prevalent case 𝑖(𝑡)

determined by a rate 

Stochastic

𝑃 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑡 = 𝑘 = 𝑃 𝑘 , 𝑖(𝑡))

Stochastic number of new infections per 

prevalent case 𝑖(𝑡)

drawn from a probability distribution 

with an expected value (mean) of 𝛽𝑖(𝑡)



Stochastic compartmental model
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◼ What does 𝑃 𝑘 , 𝑖(𝑡)) equal?

▪ Depends on the model you choose for the probability distribution P(●)

▪ Probability of what?  That the count of new infections = 𝑘 at time t

◼ So what kind of distributions are appropriate? 

▪ proper probability distributions ( σ𝑘 𝑃(𝑘) = 1 )

▪ For discrete random variables (𝑘 takes integer values only)

▪ non-negative integers only

◼ So the Poisson distribution is appropriate here too



Stochastic compartmental model
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◼ This is one way to add stochasticity to a compartmental model

▪ Provides a means to quantify the potential variation in outcomes

◼ But note that we are still only counting aggregates – there are no 
explicitly represented individuals

Each line represents a different 

realization of the epidemic trajectory 

for 𝛽 = 0.05, 

with 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒(𝑡) a stochastic draw 

from a Poisson(λ = 𝛽𝑖(𝑡)) distribution



Deriving the probability of choosing an SI pair 

See Wikipedia for a good overview

2. Hypergeometric distribution36
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What is the probability of an SI pair?
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◼ For each draw:

▪ Fixed 𝑁 ( = 𝑆 𝑡 + 𝐼 𝑡 )

▪ Draw one chip, then the second without replacement

◼ Think of S as “success” and I as “failure”

◼ Possible outcomes:  SS, II, SI (depending on 𝑡 )

◼ The Hypergeometric distribution

▪ It’s not Binomial, because you draw without replacement

▪ So the draws are dependent



Hypergeometric derivation
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Probability of the outcome:

1. Enumerate the sample space:
▪ With 10 marbles, how many ways to pick 3?

2. Count how many outcomes meet the condition (1R, 2G)?
▪ How many ways to pick 1 of the 6 reds? 

▪ How many ways to pick 2 of the 4 greens?

▪ How many ways for both of these to happen?

So the probability is defined by:
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Hypergeometric PMF
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◼ General form:
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x = number of outcomes of interest (red balls 

drawn)

K = total number of possible outcomes of that 

type (6 red balls in urn)

N = population of individual outcomes (total 

balls in urn)

n = number of outcomes sampled (number of 

balls drawn)



In the poker chip SI exercise
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◼ We drew one pair each day
▪ 𝑁 = 10 = 𝑆 𝑡 + 𝐼(𝑡)

▪ Draw 2, one chip from each state

ℎ(𝑠 = 1; 10, 𝑆 𝑡 , 2) =
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Hypergeometric Probability from Poker Chip  SI model

As you saw, the 
probability of drawing 
an SI pair changed 
(stochastically) as the 
epidemic progressed



Key point
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The signature incidence curve for the SI model
Matches the curve for the hypergeometric draw

The contact process 
generates the shape of the incidence curve

◼ So the assumptions we make there are particularly important
▪ Finite population (leads to depletion of S)

▪ Random mixing (the SI draws, hypergeometric)



What about the ICM SIR model?
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The probability of choosing an SI pair changes

▪ Because there are more types of pairs you can draw

◼ SS, SR, RR, II and SI

▪ So this is a multivariate hypergeometric distribution

h(𝑠 = 1, 𝑖 = 1 ; 10 , 𝑆 𝑡 , 𝐼 𝑡 , 2) =

𝑆(𝑡)
1

𝐼(𝑡)
1

𝑅(𝑡)
0

10
2



Wikipedia has good info on distributions
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SIR model, step by step

3. Code from epiweb(icm)44
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Setup
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◼ create individuals
ids <- 1:num # num = the initial # of individuals

◼ assign status
status <- rep("s", num)     # init.inum = the initial # of infecteds

status[sample(ids, 

size = init.inum)] <- "i“

> status

[1] "s" "s" "s" "i" "s" "s" "s" "i" "i" "i" "i" "s" "s" "i" "s" "s" "s"



Infection process
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◼ Step 1: calculate number of acts

# n Acts per Time Step = fixed act rate * n/2

acts <- round(act.rate * num[at - 1] / 2)

◼ Note:  this is a deterministic rate.  

◼ How would you change this code to make it stochastic?



Infection process
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◼ Step 2: determine who has an act with whom

# Make edgelist of partnerships by ID number

el <- t(replicate(acts, sample(1:num, 2)))

[,1] [,2]

[1,]   80    9

[2,]    9   59

[3,]    5   66

[4,]    4   84



Infection process
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◼ Step 3: limit edge list to discordant pairs

# look up the status of each member of the pair

discordant <- (status[el[, 1]] == "i" & status[el[, 2]] == "s") |

(status[el[, 1]] == "s" & status[el[, 2]] == "i")

[1]  TRUE  TRUE TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE

# create a “discordant edgelist”

del <- el[discordant == TRUE, ]

[,1] [,2]

[1,]   80    9

[2,]    9   59

[3,]    5   66

[4,]   29   38



Infection process
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◼ Step 4: determine infections

# Infection is a Bernoulli draw for each discordant pair

infections <- rbinom(nrow(del), 1, tprob)

> infections

[1] 1 0 0 1



Infection process

NME Workshop 50

◼ Step 5: bookkeeping for infections

# Limit discordant edge list to pairs with incident infection

del <- del[infections == TRUE, ]

# Look up newly infected ID in each pair

susIds <- ifelse(status[del[, 1]] == "s", del[, 1], del[, 2])

newInfIds <- susIds[infections == 1]

# Update individual-level status attribute

status[newInfIds] <- “i"



Recovery process
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# Identify infected (persons eligible to recover)

idsElig <- which(status == "i")

nElig <- length(idsElig)

# Draw random numbers to determine recoveries

vecRecov <- which(rbinom(nElig, 1, rec.rate) == 1)

# Do bookkeeping

if (length(vecRecov) > 0) {

idsRecov <- idsElig[vecRecov]

nRecov <- length(idsRecov)

status[idsRecov] <- "r"

}
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Wrap up
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◼ Process output

# Calculate summary statistics

prevalence <- sum(status == “i") 

incidence <- length(newInfIds)



epiweb(icm)SIR : full code
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ids <- 1:num # initial # of individuals

status <- rep("s", num)

status[sample(ids,  size = init.inum)] <- "i“ # initial # of infecteds

acts <- round(act.rate * num[at - 1] / 2) # n Acts per Time Step

el <- t(replicate(acts, sample(1:num, 2))) # Edgelist of partnerships by ID

discordant <- (status[el[, 1]] == "i" & status[el[, 2]] == "s") |

(status[el[, 1]] == "s" & status[el[, 2]] == "i") # Status lookup

del <- el[discordant == TRUE, ] # Find “discordant edgelist”

infections <- rbinom(nrow(del), 1, tprob) # Infection is a Bernoulli draw

del <- del[infections == TRUE, ] # Incident pairs

susIds <- ifelse(status[del[, 1]] == "s", del[, 1], del[, 2]) # Inci ID lookup

newInfIds <- susIds[infections == 1] # Update individual infection status

status[newInfIds] <- “i"

idsElig <- which(status == "i")

nElig <- length(idsElig)

vecRecov <- which(rbinom(nElig, 1, rec.rate) == 1) # Recovery is a Bernoulli draw

if (length(vecRecov) > 0) { # Update individual recovery status

idsRecov <- idsElig[vecRecov]

nRecov <- length(idsRecov)

status[idsRecov] <- "r"

}

prevalence <- sum(status == “i") # Calculate summary statistics

incidence <- length(newInfIds)


