
In Silico Experiments with relevent

Carter T. Butts

5/16/2023

Contents
The statnet Project . 1
Section 0. Introduction to the Tutorial . 2
Section 1. A Quorum of Concepts Involving In Silico Experiments 3
Section 2. A Quick REM Refresher . 5
Section 3. In Silico Knockout (and Up, and Down) Experiments with REMs 24
Section 4. Knocking In Hypothetical Mechanisms . 31
Section 5. Probing Covariates, and Dose/Response Curves . 34
Section 6. Cutting In: Intervening in Trajectories . 38
Section 7. De Novo Simulation of REMs . 42
References . 44

Last updated 2023-05-16

This tutorial is a joint product of the Statnet Development Team:

Pavel N. Krivitsky (University of New South Wales)
Martina Morris (University of Washington)
Mark S. Handcock (University of California, Los Angeles)
Carter T. Butts (University of California, Irvine)
David R. Hunter (Penn State University)
Steven M. Goodreau (University of Washington)
Chad Klumb (University of Washington)
Skye Bender de-Moll (Oakland, CA)
Michał Bojanowski (Kozminski University, Poland)

The network modeling software demonstrated in this tutorial is authored by Carter Butts (relevent, sna).

The statnet Project
All statnet packages are open-source, written for the R computing environment, and published on CRAN.
The source repositories are hosted on GitHub. Our website is statnet.org

• Need help? For general questions and comments, please email the statnet users group at statnet_
help@uw.edu. You’ll need to join the listserv if you’re not already a member. You can do that here:
statnet_help listserve.

• Found a bug in our software? Please let us know by filing an issue in the appropriate package GitHub
repository, with a reproducible example.

• Want to request new functionality? We welcome suggestions – you can make a request by filing an issue
on the appropriate package GitHub repository. The chances that this functionality will be developed

1

https://github.com/statnet
http://statnet.org/
statnet_help@uw.edu
statnet_help@uw.edu
https://mailman13.u.washington.edu/mailman/listinfo/statnet_help
https://github.com/statnet
https://github.com/statnet
https://github.com/statnet

are substantially improved if the requests are accompanied by some proposed code (we are happy to
review pull requests).

• For all other issues, please email us at contact@statnet.org.

Section 0. Introduction to the Tutorial
This tutorial provides a very basic introduction to in silico experiments with relational event data using
statnet software. This online tutorial is also designed for self-study, with example code and self-contained
data. We will be using a number of statnet tools, notably including:

• relevent – modeling and simulation for relational event models
• sna – tools for social network analysis

Additional background on the tools, modeling framework, and data used in this tutorial may be found in the
references at the bottom of this document.

0.0 Prerequisites

This tutorial assumes basic familiarity with R, experience with network concepts, terminology and data, and
familiarity with the general framework for statistical modeling and inference. It also assumes basic familiarity
with relational event models (REMs). If you are not familiar with REMs, you may want to examine the
statnet tutorial on relational event models first. (See the statnet web site for available tutorials.) This
tutorial builds on and expands a number of topics covered in the previous tutorial (including using data and
models treated there), and the latter is thus a great way to get up to speed before studying the former.

0.1 Software installation

Minimally, you will need to install the latest version of R (available here), the parallel package, and the
statnet packages relevent, sna, and network to run the code presented here (sna will automatically install
network when it is installed).

The full set of installation instructions with details can be found on the statnet workshop wiki.

If you have not already downloaded the statnet packages, the quickest way to install these (and the other
most commonly used packages from the statnet suite), is to open an R session and type:
install.packages(c("relevent","sna","parallel"))

This will also ensure that you have the parallel package installed, which may be helpful for speeding up
some demonstrations (depending on your hardware and software configuration).
library(relevent)

Loading required package: trust

Loading required package: sna

Loading required package: statnet.common

Attaching package: ’statnet.common’

The following objects are masked from ’package:base’:

attr, order

Loading required package: network

’network’ 1.18.1 (2023-01-24), part of the Statnet Project
* ’news(package="network")’ for changes since last version

2

mailto:contact@statnet.org
https://statnet.org/workshops
https://statnet.org/workshop-relevent/
https://cran.r-project.org
https://statnet.org/workshops

* ’citation("network")’ for citation information
* ’https://statnet.org’ for help, support, and other information

sna: Tools for Social Network Analysis
Version 2.7-1 created on 2023-01-24.
copyright (c) 2005, Carter T. Butts, University of California-Irvine
For citation information, type citation("sna").
Type help(package="sna") to get started.

Loading required package: coda

relevent: Relational Event Models
Version 1.2-1 created on 2023-01-24.
copyright (c) 2007, Carter T. Butts, University of California-
Irvine
For citation information, type citation("relevent").
Type help(package="relevent") to get started.

library(parallel)

You can check the version number with:
packageVersion("relevent")

[1] ’1.2.1’

Throughout, we will set a random seed via set.seed() for commands in the tutorial that require simulating
random values—this is not necessary, but it (probably) ensures that you will get the same results as the
tutorial. To follow the analyses, you will also need to load the workshop data. Assuming that it is in your
current path, you can load it like so:
load("in_silico_experiments_tutorial.RData")

Note that if you put the file in a different location, you may need to alter the above to provide the path to
the data file.

Finally, we need to set the number of cores to use for parallel simulation of experiments. Depending on
your hardware and operating system, you may be stuck at “1” here (no parallelization), but if you have a
compatible OS and multiple cores, it will speed things up quite a lot to increase this. (See ?parallel for
details.) However, if you leave this at 1, no harm will be done.
mc.cores<-1 #Set to 1 by default, but consider increasing!

Section 1. A Quorum of Concepts Involving In Silico Experiments
The basic idea behind in silico (i.e., computational) experiments predates modern computing hardware: given
a model for a phenomenon of interest, vary the parameters of or inputs to study how the behavior of the
model changes. Why would we care about the behavior of a model? There are many reasons. Among them:
sometimes, the model embodies mechanisms of fundamental interest (that we wish to study); sometimes, the
model is being used to drive a decision (or for a similar use), and we want to see how robust it is to changes
in parameters or inputs; and sometimes, we think that the model is a sufficiently credible proxy for a real
process that its behavior may give us insight into how that process works.

Here, we will focus on a specific class of such experiments: ones in which we begin with an empirically
calibrated model, and perturb or modify specific aspects of that model in order to examine changes in model
behavior with respect to a target outcome. Experiments of this kind are used throughout the sciences, for
many different purposes, but we will be concerned with how to use them to probe social dynamics, in the
context of relational event models as implemented in the statnet toolchain. We do not thus attempt to give
a full (nor rigorous) treatment of the topic here, but limit ourselves to a few simple background ideas that we
will use in what follows.

3

In general, we can think of our experiments as follows. Let M(θ,X) be a stochastic process (corresponding to
a model of interest), that takes a parameter vector θ and covariate set X, and returns a (random) realization.
While M could take any form, we are usually interested in models for which the parameters refer to the action
of particular predictors or social mechanisms, that are proposed to drive a phenomenon of interest. The
realizations generated by M could in principle be a vector of outputs representing individual characteristics,
a network, or something else - but here, those outputs will be event histories representing timed sequences of
interactions among individuals in a social system. Let f represent some statistic defined on the outputs -
i.e. a property or vector of properties in which we are interested. Our experiments are then concerned with
the behavior of f(M(θ,X)), as θ and/or X are varied. In particular, we will begin with some specified model
M(θ̂obs, Xobs) that has been calibrated to a data set, and then consider how f changes when we deviate from
our estimated parameters (or observed covariates). This is accomplished by Monte Carlo methods: that is,
we take multiple draws y1, . . . , yn ∼ f(M(θ,X)), and compare samples obtained with different values of θ
and X. In principle, this is extremely simple, though doing so in a way that yields useful insights (or that
can be computed in a reasonable period of time) is not always trivial.

While we again stress that there are diverse approaches to this topic, we can for the most part think of the
typical experiment we wish to perform in terms of a basic “recipe:”

1. Given observations Z, select and calibrate model M(θ̂obs, Xobs).
2. Choose statistic f of substantive interest.
3. Simulate f(M(θ̂obs, Xobs)) and compare to f(Z) to verify model adequacy for the target statistic.
4. Identify a set of conditions, (θ(1), X(1)), . . . , (θ(m), X(m)), to be examined.
5. For each condition, draw a sample y(i)

1 , . . . , y
(i)
n ∼ f(M(θ(i), X(i))).

6. Analyze cross-sample variation to understand the impact of θ and X on the outcome of interest under
M .

Even this recipe has countless variations! Some - particularly ways of choosing alternative parameters and
covariates - are so broadly useful, however, that they are worth noting (and naming). Our nomenclature for
these types of designs comes primarily from analogy to experimental methods in the biomedical sciences,
where analogous (but in vivo and in vitro) procedures have been extensively developed to make progress in
understanding the behavior of complex biological systems:

• Knock-out experiments are experiments in which our conditions involve removing or deactivating some
mechanism within M , usually by setting some θi = 0. By “turning off” select aspects of model behavior
while leaving the other parts intact, we can probe the roles of the respective mechanisms in shaping the
target outcome.

• Knock up/down experiments are experiments in which our conditions involve strengthening or weakening
the action of some mechanism within M , generally in our context by setting some θi = γθ̂obs,i. By
“tuning up” or “tuning down” a specific mechanism, we can obtain a sense not only of that the mechanism
may be doing in shaping the target outcome, but what it “could” do (in a hypothetical sense).

• Knock-in experiments are experiments in which our conditions involve adding a new mechanism to
M , generally in our case by taking some θi that was implicitly equal to 0 in the calibrated model and
setting it to a non-zero value. By introducing a new mechanism to the calibrated set, we can explore
how hypothetically interesting (or plausible) processes might interact with those already believed to be
present.

• Context-shifting experiments are experiments in which our conditions involve changing the covariates
(X) that determine the context or “substrate” on which the system acts. Typically, this involves
changing covariates from Xobs to substantively relevant alternative values. These experiments are
often useful for understanding how an empirically calibrated set of mechanisms might play out in a
new setting, or probing the potential effects of interventions in which covariates might be deliberately
altered.

We will see examples of all of these types of experiments here, and show how they may be implemented for
relational event models using relevent.

Finally, we note that in this brief discussion we have made no specific reference to how our model was
calibrated, nor to the presumptive epistemic properties of the model in question. Much can be said regarding

4

these and other issues, but here we concern ourselves narrowly with the question of how to carry out simple
experiments using the relevent package. Relatedly, the restrictions of a tutorial format lead us to take a
more casual (and less rigorous) approach that would be ideal in an applied setting. These demonstrations,
however, introduce the basic tools required to carry out simple in silico experiments, which may be elaborated
as needed for the occasion.

Section 2. A Quick REM Refresher
Relational events (Butts 2008) are discrete representations of actions, behaviors, state changes, or other
phenomena that can be approximated as (1) relational (i.e., connecting one or more senders to one or more
receivers) and (2) well-localized in time, relative to the system of interest. Typically, relational events can be
represented as 4-tuples (s, r, c, t), where s is a sender (or set thereof), r is a receiver (or set thereof), c is a
vector of event properties, and t is a time point. Often, we study “unvalued,” dyadic relational events that
can be more simply represented in terms of a single sender, a single receiver, and the time when the event
occurs - these will be our focus in this tutorial.

The critical feature of relational events that distinguishes them from ties of the sort studied in social network
analysis is that they are - at least approximately - instantaneous. Social ties are temporally extensive: even
in dynamic networks, there is a non-vanishing period of time in which any given tie is present, which allows
ties to be coterminous. The vast majority of social network modeling and analysis is focused on the structure
of such coterminous relationships, and their evolution over time. By contrast, relational events are not
coterminous, and do not give rise to instantaneous network structure. They are, however, well-ordered in
time. This basic fact leads us to ask very different questions of relational events than are asked of social ties,
and it also leads us to very different kinds of models.

Relational events, aptly enough, are studied using relational event models (REMs). REMs model relational
dynamics in terms of events in continuous time; if you are familiar with survival, event history, or hazard
analysis, the core ideas behind REMs will be natural to you (though different fields tend to use different
language to discuss the same concepts, and impose slightly different assumptions, so you may see some things
that are not as you expect). The most common approach can be very tersely summarized as follows. At
any given time, t, the set of all so-far realized events forms the event history, At. The set of events that are
possible given that event history is then given by A(At) - this lets us accounts for the fact that, in some
systems, some events may enable or foreclose the possibility of others. Letting s(a), r(a), and c(a) be the
event sender, receiver, and category (if applicable) for event a, and Xa a set of covariates for a, we then write
the hazard (or rate) for a as

λaAtθ =
{

exp
(
θTu (s(a), r(a), c(a), Xa, At)

)
if a ∈ A(At)

0 otherwise
,

where λaAtθ is the hazard for a given the event history up to the current moment, θ is a vector of parameters,
and u is a vector of real-valued statistics that depend on the history and event properties. Intuitively, every
unit change in ui for event a multiplies the hazard of a by exp(θ) (which might be a decrease, if θ < 0).
Typically, we assume that the hazards remain constant until an event occurs, at which point they may change
(based on the above equation). Thus, realized events drive the hazard of the next event, whose realization
in turn updates the hazards. (It is possible to relax this assumption, e.g. using exogenous “clock events”
(Marcum and Butts 2015) that update the hazards without generating an endogenous event. But here we
stick to the basic case.)

Given an observed event history, we may specify a REM by choosing the u functions, and any associated
covariates; these reflect the social, cognitive, or other mechanisms proposed to drive the social dynamics.
Given such a specification, inference for θ can be performed using maximum likelihood or Bayesian methods.
Model selection may likewise be performed using standard statistical methods (e.g., penalized model selection
statistics such as the BIC or AICc). In cases where the event timing is not observed, it is still possible to
estimate a REM of the form described above (up to a pacing constant) using a marginalized likelihood, so
long as the order of events is known - this allows REMs to be used with data derived from transcripts or other

5

sources in which event times are not recorded. We direct the interested reader to the associated references for
statistical details.

REMs were introduced in Butts (2008); many extensions and other subsequent developments have been made
by a growing community of researchers. For those seeking more information on these topics, an accessible
overview with references to past and recent work can be found in Butts et al. (2023).

Within statnet, inference and simulation for REMs is performed using the relevent package. rem.dyad is
the primary workhorse tool for handling dyadic relational event data, and will be our focus here. In particular,
rem.dyad has a simulate method that allows simulation of event histories from either fitted or de novo
REMs. Here, we will examine how this capability can be used to perform in silico experiments to probe
the role of specific mechanisms on social dynamics, or to glean insights that could help inform intervention
studies. To this end, we will use models fit to some sample data sets - we generate these below.

2.1 The WTC Police Radio Communication Model

The data set we will use for one of our running examples in this tutorial comes from the World Trade Center
radio communication data set coded by Butts, Petrescu-Prahova, and Cross (2007). It consists of radio calls
among 37 named communicants belonging to a police unit at the World Trade Center complex on the morning
of 9/11/2001. The data is stored in an edgelist (or event list), contained in an object called WTCPoliceCalls;
printing it should yield output like the following:
head(WTCPoliceCalls)

number source recipient
1 1 16 32
2 2 32 16
3 3 16 32
4 4 16 32
5 5 11 32
6 6 11 32

tail(WTCPoliceCalls)

number source recipient
476 476 28 16
477 477 16 28
478 478 28 16
479 479 15 16
480 480 32 16
481 481 16 32

Note the form of the data: a matrix with the timing information, source (numbered from 1 to 37), and
recipient (again numbered from 1 to 37) for each event (i.e., radio call). It is important to note that the
WTC radio data was coded from transcripts that lacked detailed timing information; we do not therefore
know precisely when these calls were made. We do, however, know the order in which calls were made, and
can use this to fit relational event models with rem.dyad.

Before analyzing the data, it is helpful to consider what it looks like in time aggregated form. The helper
function as.sociomatrix.eventlist is useful for this purpose: it converts an event list into a valued
sociomatrix, of the form used by other statnet routines. Let’s convert the data to sociomatrix form, and
visualize it using the gplot function of the sna package:
WTCPoliceNet <- as.sociomatrix.eventlist(WTCPoliceCalls, 37)
gplot(WTCPoliceNet, edge.lwd = WTCPoliceNetˆ0.75, vertex.col = 2 +

WTCPoliceIsICR, vertex.cex = 1.25)

6

In this visualization, we have scaled edge widths by communication volume – clearly, some pairs interact
much more than others. Note also that we have colored vertices based on whether or not they occupy an
institutionalized coordinative role (ICR), as indicated by the vector WTCPoliceIsICR. Those for whom this
vector is TRUE (green) occupy roles within the police organization that would be expected to participate in
coordinative activities; other actors were not identified as occupying such roles, based on the transcript data.
We will employ this covariate (as well as various endogenous mechanisms) to model the dynamics of radio
communication within the WTC police network.

2.1.1 Fitting a Model to the WTC Data For a detailed treatment of REM fitting and evaluation
for this data using relevent, see the statnet relational event tutorial. Here, we skip to the chase, noting
only a few details that we will want later. In the original study of the WTC networks, Butts (2008) (see
also Renshaw et al. (2023)) identifies several plausible drivers of communication among agents in the WTC
complex, including

• Pre-existing, institutionalized coordinative roles (ICR), which position some individuals to become
central as both targets for and initiators of communicative acts;

• Conversational norms (embodied in radio standard operating procedures (SOP)) that strongly favor
turn-taking, “baton passing,” and sequential address;

• Mnemonic effects that make egocentrically recent incoming and outgoing conversation partners favored
targets for communication; and

• A “preferential attachment” effect, whereby those involved in a greater share of radio traffic become
increasingly salient to others, and thus more attractive as subsequent targets.

A model based on these effects can be fit to the WTC police call data as follows:
set.seed(13) #To allow later results to be reproduced...
wtcfit <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt",

7

"PSAB-BA", "PSAB-BY", "PSAB-AY", "RRecSnd", "RSndSnd", "NTDegRec"),
covar = list(CovInt = WTCPoliceIsICR), hessian = TRUE)

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics

summary(wtcfit) #Show the parameter estimates, and related quantities

Relational Event Model (Ordinal Likelihood)

Estimate Std.Err Z value Pr(>|z|)
NTDegRec 3.13454 0.56678 5.5305 3.194e-08 ***
RRecSnd 2.02903 0.28500 7.1194 1.084e-12 ***
RSndSnd 0.87115 0.23846 3.6533 0.0002589 ***
CovInt.1 0.70734 0.16400 4.3129 1.611e-05 ***
PSAB-BA 5.32576 0.18236 29.2042 < 2.2e-16 ***
PSAB-BY 1.86023 0.26322 7.0674 1.579e-12 ***
PSAB-AY 1.64806 0.31092 5.3005 1.155e-07 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 2276.263 on 474 degrees of freedom

Chi-square: 4644.785 on 7 degrees of freedom, asymptotic p-value 0
AIC: 2290.263 AICC: 2290.5 BIC: 2319.494

The rem.dyad command fits the model, using the event history in WTCPoliceCalls; we must tell it how
many nodes there are (n), and what effects (u functions) to put in the model (effects). The covar argument
allows us to pass covariate information, here the vector of ICR indicators WTCPoliceIsICR. (See ?rem.dyad
or the above-mentioned tutorial for additional details.) The model output gives us the θ estimates for each
effect (here, posterior modes under very diffuse 0-centered priors), and associated estimates of uncertainty
(technically, estimated posterior standard deviations). In this case, the estimated parameters are all quite
far from 0, relative to their uncertainties (as shown by the Z values, and associated frequentist tests). The
effects may be interpreted very broadly as follows:

• There is indeed a preferential attachment effect (NTDegRec), with those having a higher fraction of total
traffic at any given time being more favored communication targets;

• Ego’s more recent incoming (RRecSnd) and outgoing (RSndSnd) communication partners are targeted
by ego at higher rates - but this effect is much greater for incoming than outgoing partners;

• There is a modest tendency for ICRs to interact and be interacted with at higher rates;
• Turn-taking reciprocity (PSAB-BA) has a profound effect on communication dynamics, with baton

passing (PSAB-BY) and sequential address (PSAB-AY) being weaker but prevalent.

2.1.2 Assessing the WTC Model The statnet relational event tutorial discusses model assessment
(including the assessment of this model) at some length; although this is an important aspect of model
building, here we simply examine a few basic indicators. One useful tool for adequacy assessment is to
consider the rank of the observed events in the predicted rate structure: that is, we ask to what extent the
events viewed most likely to occur are in fact those that are observed.

8

hist(wtcfit$observed.rank) #Histogram of ranks (low is good)

Histogram of wtcfit$observed.rank

wtcfit$observed.rank

F
re

qu
en

cy

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0

Sometimes useful to plot the ECDF of the observed
ranks....
plot(ecdf(wtcfit$observed.rank/(37 * 36)), xlab = "Prediction Threshold (Fraction of Possible Events)",

ylab = "Fraction of Observed Events Covered", main = "Classification Accuracy")
abline(v = c(0.05, 0.1, 0.25), col = 2)

9

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classification Accuracy

Prediction Threshold (Fraction of Possible Events)

F
ra

ct
io

n
of

 O
bs

er
ve

d
E

ve
nt

s
C

ov
er

ed

The model does quite well. As the above indicates, we sometimes (in fact often) manage to get things exactly
right: that is, the event predicted most likely to be the next in the sequence is in fact the one that is observed.
Examining the match rate is a very strict notion of adequacy, but can be useful for assessing models that are
strongly predictive.
wtcfit$predicted.match #Exactly correct src/target

source recipient
[1,] FALSE FALSE
[2,] TRUE TRUE
[3,] TRUE TRUE
[4,] FALSE FALSE
[5,] FALSE FALSE
[6,] FALSE FALSE
[7,] FALSE FALSE
[8,] FALSE FALSE
[9,] FALSE FALSE

[10,] FALSE FALSE
[11,] TRUE TRUE
[12,] FALSE TRUE
[13,] FALSE FALSE
[14,] FALSE FALSE
[15,] TRUE TRUE
[16,] TRUE TRUE
[17,] TRUE TRUE
[18,] TRUE TRUE
[19,] TRUE TRUE

10

[20,] FALSE TRUE
[21,] FALSE FALSE
[22,] FALSE FALSE
[23,] FALSE FALSE
[24,] TRUE TRUE
[25,] TRUE TRUE
[26,] TRUE TRUE
[27,] FALSE FALSE
[28,] TRUE TRUE
[29,] TRUE TRUE
[30,] FALSE FALSE
[31,] TRUE TRUE
[32,] TRUE FALSE
[33,] FALSE TRUE
[34,] TRUE TRUE
[35,] TRUE TRUE
[36,] TRUE TRUE
[37,] FALSE FALSE
[38,] TRUE TRUE
[39,] TRUE TRUE
[40,] FALSE TRUE
[41,] FALSE FALSE
[42,] TRUE TRUE
[43,] TRUE TRUE
[44,] FALSE TRUE
[45,] FALSE FALSE
[46,] TRUE TRUE
[47,] TRUE TRUE
[48,] TRUE TRUE
[49,] TRUE TRUE
[50,] TRUE TRUE
[51,] FALSE FALSE
[52,] FALSE FALSE
[53,] FALSE FALSE
[54,] TRUE TRUE
[55,] TRUE TRUE
[56,] TRUE TRUE
[57,] TRUE TRUE
[58,] TRUE TRUE
[59,] FALSE TRUE
[60,] TRUE TRUE
[61,] FALSE TRUE
[62,] TRUE TRUE
[63,] TRUE TRUE
[64,] TRUE TRUE
[65,] FALSE TRUE
[66,] TRUE TRUE
[67,] TRUE TRUE
[68,] FALSE FALSE
[69,] TRUE TRUE
[70,] TRUE TRUE
[71,] TRUE TRUE
[72,] TRUE TRUE
[73,] FALSE FALSE

11

[74,] TRUE TRUE
[75,] TRUE TRUE
[76,] TRUE TRUE
[77,] FALSE FALSE
[78,] TRUE TRUE
[79,] TRUE TRUE
[80,] TRUE TRUE
[81,] TRUE TRUE
[82,] TRUE TRUE
[83,] FALSE FALSE
[84,] TRUE FALSE
[85,] TRUE TRUE
[86,] TRUE TRUE
[87,] TRUE TRUE
[88,] TRUE TRUE
[89,] FALSE FALSE
[90,] TRUE TRUE
[91,] TRUE TRUE
[92,] TRUE TRUE
[93,] TRUE TRUE
[94,] FALSE TRUE
[95,] TRUE TRUE
[96,] TRUE TRUE
[97,] TRUE FALSE
[98,] TRUE TRUE
[99,] FALSE FALSE
[100,] TRUE TRUE
[101,] TRUE TRUE
[102,] TRUE TRUE
[103,] TRUE TRUE
[104,] TRUE TRUE
[105,] FALSE TRUE
[106,] FALSE FALSE
[107,] TRUE TRUE
[108,] TRUE TRUE
[109,] TRUE TRUE
[110,] FALSE TRUE
[111,] TRUE TRUE
[112,] TRUE TRUE
[113,] TRUE TRUE
[114,] FALSE FALSE
[115,] TRUE TRUE
[116,] TRUE TRUE
[117,] TRUE TRUE
[118,] FALSE FALSE
[119,] FALSE FALSE
[120,] TRUE TRUE
[121,] TRUE TRUE
[122,] TRUE TRUE
[123,] FALSE TRUE
[124,] TRUE TRUE
[125,] FALSE FALSE
[126,] FALSE FALSE
[127,] FALSE FALSE

12

[128,] TRUE FALSE
[129,] FALSE TRUE
[130,] TRUE TRUE
[131,] TRUE TRUE
[132,] TRUE TRUE
[133,] TRUE TRUE
[134,] FALSE TRUE
[135,] TRUE TRUE
[136,] TRUE TRUE
[137,] TRUE TRUE
[138,] FALSE FALSE
[139,] FALSE FALSE
[140,] FALSE FALSE
[141,] FALSE FALSE
[142,] FALSE FALSE
[143,] TRUE TRUE
[144,] TRUE TRUE
[145,] TRUE TRUE
[146,] FALSE FALSE
[147,] TRUE TRUE
[148,] TRUE TRUE
[149,] TRUE TRUE
[150,] FALSE TRUE
[151,] TRUE TRUE
[152,] TRUE TRUE
[153,] TRUE FALSE
[154,] FALSE TRUE
[155,] TRUE TRUE
[156,] TRUE TRUE
[157,] TRUE TRUE
[158,] TRUE TRUE
[159,] TRUE TRUE
[160,] TRUE TRUE
[161,] TRUE TRUE
[162,] FALSE TRUE
[163,] TRUE TRUE
[164,] TRUE TRUE
[165,] TRUE TRUE
[166,] TRUE TRUE
[167,] FALSE FALSE
[168,] FALSE FALSE
[169,] TRUE FALSE
[170,] TRUE TRUE
[171,] TRUE TRUE
[172,] FALSE TRUE
[173,] TRUE TRUE
[174,] TRUE TRUE
[175,] TRUE TRUE
[176,] FALSE TRUE
[177,] TRUE TRUE
[178,] TRUE TRUE
[179,] TRUE TRUE
[180,] TRUE TRUE
[181,] TRUE TRUE

13

[182,] TRUE TRUE
[183,] FALSE FALSE
[184,] TRUE TRUE
[185,] TRUE FALSE
[186,] FALSE FALSE
[187,] TRUE TRUE
[188,] TRUE TRUE
[189,] FALSE FALSE
[190,] TRUE TRUE
[191,] FALSE FALSE
[192,] TRUE TRUE
[193,] TRUE TRUE
[194,] TRUE TRUE
[195,] TRUE TRUE
[196,] TRUE TRUE
[197,] TRUE TRUE
[198,] TRUE TRUE
[199,] TRUE TRUE
[200,] TRUE TRUE
[201,] TRUE TRUE
[202,] FALSE TRUE
[203,] TRUE TRUE
[204,] FALSE TRUE
[205,] TRUE TRUE
[206,] TRUE TRUE
[207,] TRUE TRUE
[208,] FALSE TRUE
[209,] TRUE TRUE
[210,] TRUE TRUE
[211,] TRUE FALSE
[212,] TRUE TRUE
[213,] FALSE FALSE
[214,] FALSE TRUE
[215,] TRUE TRUE
[216,] TRUE TRUE
[217,] TRUE TRUE
[218,] TRUE TRUE
[219,] TRUE TRUE
[220,] FALSE FALSE
[221,] TRUE TRUE
[222,] TRUE TRUE
[223,] TRUE TRUE
[224,] TRUE TRUE
[225,] FALSE FALSE
[226,] TRUE TRUE
[227,] TRUE TRUE
[228,] TRUE TRUE
[229,] TRUE FALSE
[230,] TRUE TRUE
[231,] TRUE TRUE
[232,] TRUE TRUE
[233,] TRUE TRUE
[234,] TRUE TRUE
[235,] TRUE TRUE

14

[236,] TRUE TRUE
[237,] TRUE TRUE
[238,] TRUE TRUE
[239,] TRUE FALSE
[240,] TRUE TRUE
[241,] TRUE TRUE
[242,] TRUE TRUE
[243,] TRUE FALSE
[244,] FALSE FALSE
[245,] FALSE FALSE
[246,] FALSE TRUE
[247,] TRUE TRUE
[248,] TRUE TRUE
[249,] TRUE TRUE
[250,] FALSE FALSE
[251,] TRUE TRUE
[252,] TRUE TRUE
[253,] TRUE TRUE
[254,] TRUE TRUE
[255,] TRUE TRUE
[256,] FALSE FALSE
[257,] TRUE TRUE
[258,] TRUE TRUE
[259,] TRUE TRUE
[260,] FALSE FALSE
[261,] TRUE TRUE
[262,] TRUE TRUE
[263,] TRUE TRUE
[264,] TRUE TRUE
[265,] TRUE TRUE
[266,] TRUE TRUE
[267,] TRUE TRUE
[268,] TRUE TRUE
[269,] FALSE FALSE
[270,] TRUE TRUE
[271,] TRUE TRUE
[272,] TRUE TRUE
[273,] TRUE TRUE
[274,] TRUE TRUE
[275,] TRUE TRUE
[276,] FALSE FALSE
[277,] TRUE TRUE
[278,] TRUE TRUE
[279,] TRUE TRUE
[280,] TRUE TRUE
[281,] TRUE TRUE
[282,] TRUE TRUE
[283,] TRUE TRUE
[284,] TRUE TRUE
[285,] TRUE TRUE
[286,] TRUE TRUE
[287,] TRUE TRUE
[288,] TRUE TRUE
[289,] FALSE FALSE

15

[290,] TRUE FALSE
[291,] TRUE TRUE
[292,] TRUE TRUE
[293,] TRUE TRUE
[294,] TRUE TRUE
[295,] TRUE TRUE
[296,] TRUE TRUE
[297,] TRUE TRUE
[298,] TRUE TRUE
[299,] TRUE TRUE
[300,] TRUE TRUE
[301,] TRUE TRUE
[302,] TRUE TRUE
[303,] FALSE TRUE
[304,] TRUE TRUE
[305,] TRUE TRUE
[306,] FALSE FALSE
[307,] TRUE TRUE
[308,] TRUE TRUE
[309,] FALSE FALSE
[310,] TRUE TRUE
[311,] TRUE TRUE
[312,] TRUE FALSE
[313,] FALSE TRUE
[314,] TRUE TRUE
[315,] TRUE TRUE
[316,] TRUE TRUE
[317,] FALSE TRUE
[318,] TRUE TRUE
[319,] TRUE TRUE
[320,] TRUE TRUE
[321,] TRUE TRUE
[322,] TRUE TRUE
[323,] TRUE TRUE
[324,] FALSE FALSE
[325,] TRUE TRUE
[326,] FALSE FALSE
[327,] TRUE TRUE
[328,] FALSE FALSE
[329,] TRUE TRUE
[330,] TRUE TRUE
[331,] TRUE TRUE
[332,] FALSE TRUE
[333,] TRUE TRUE
[334,] FALSE FALSE
[335,] TRUE TRUE
[336,] TRUE TRUE
[337,] TRUE TRUE
[338,] TRUE TRUE
[339,] TRUE TRUE
[340,] FALSE FALSE
[341,] TRUE TRUE
[342,] TRUE TRUE
[343,] TRUE TRUE

16

[344,] FALSE FALSE
[345,] TRUE TRUE
[346,] TRUE TRUE
[347,] FALSE FALSE
[348,] FALSE FALSE
[349,] FALSE FALSE
[350,] TRUE TRUE
[351,] TRUE TRUE
[352,] TRUE TRUE
[353,] FALSE TRUE
[354,] TRUE TRUE
[355,] TRUE TRUE
[356,] TRUE TRUE
[357,] FALSE FALSE
[358,] TRUE TRUE
[359,] FALSE FALSE
[360,] FALSE TRUE
[361,] FALSE FALSE
[362,] TRUE TRUE
[363,] TRUE TRUE
[364,] TRUE TRUE
[365,] TRUE TRUE
[366,] TRUE FALSE
[367,] TRUE TRUE
[368,] TRUE TRUE
[369,] TRUE TRUE
[370,] FALSE FALSE
[371,] FALSE FALSE
[372,] TRUE FALSE
[373,] FALSE FALSE
[374,] FALSE TRUE
[375,] TRUE TRUE
[376,] TRUE TRUE
[377,] TRUE FALSE
[378,] TRUE TRUE
[379,] FALSE FALSE
[380,] TRUE TRUE
[381,] TRUE TRUE
[382,] TRUE TRUE
[383,] FALSE FALSE
[384,] TRUE TRUE
[385,] FALSE FALSE
[386,] TRUE TRUE
[387,] FALSE FALSE
[388,] FALSE FALSE
[389,] TRUE TRUE
[390,] TRUE TRUE
[391,] TRUE TRUE
[392,] TRUE TRUE
[393,] TRUE TRUE
[394,] TRUE TRUE
[395,] FALSE FALSE
[396,] TRUE TRUE
[397,] TRUE TRUE

17

[398,] TRUE TRUE
[399,] FALSE FALSE
[400,] TRUE TRUE
[401,] FALSE FALSE
[402,] TRUE TRUE
[403,] TRUE TRUE
[404,] TRUE TRUE
[405,] TRUE TRUE
[406,] FALSE FALSE
[407,] TRUE TRUE
[408,] TRUE TRUE
[409,] TRUE TRUE
[410,] FALSE FALSE
[411,] TRUE FALSE
[412,] TRUE TRUE
[413,] TRUE TRUE
[414,] TRUE TRUE
[415,] TRUE TRUE
[416,] FALSE TRUE
[417,] TRUE TRUE
[418,] TRUE TRUE
[419,] FALSE FALSE
[420,] FALSE FALSE
[421,] TRUE TRUE
[422,] TRUE TRUE
[423,] TRUE TRUE
[424,] TRUE FALSE
[425,] TRUE TRUE
[426,] TRUE TRUE
[427,] TRUE FALSE
[428,] TRUE TRUE
[429,] TRUE TRUE
[430,] TRUE TRUE
[431,] TRUE TRUE
[432,] TRUE TRUE
[433,] TRUE TRUE
[434,] FALSE FALSE
[435,] TRUE TRUE
[436,] TRUE TRUE
[437,] TRUE TRUE
[438,] TRUE TRUE
[439,] FALSE FALSE
[440,] TRUE TRUE
[441,] TRUE TRUE
[442,] TRUE TRUE
[443,] FALSE FALSE
[444,] TRUE TRUE
[445,] TRUE TRUE
[446,] TRUE TRUE
[447,] TRUE TRUE
[448,] TRUE TRUE
[449,] FALSE FALSE
[450,] TRUE TRUE
[451,] TRUE TRUE

18

[452,] FALSE TRUE
[453,] FALSE FALSE
[454,] FALSE FALSE
[455,] FALSE FALSE
[456,] TRUE TRUE
[457,] TRUE TRUE
[458,] TRUE TRUE
[459,] FALSE FALSE
[460,] TRUE TRUE
[461,] FALSE FALSE
[462,] TRUE TRUE
[463,] TRUE TRUE
[464,] TRUE TRUE
[465,] TRUE TRUE
[466,] TRUE TRUE
[467,] FALSE FALSE
[468,] TRUE TRUE
[469,] TRUE TRUE
[470,] TRUE TRUE
[471,] TRUE TRUE
[472,] TRUE TRUE
[473,] FALSE TRUE
[474,] TRUE TRUE
[475,] TRUE TRUE
[476,] FALSE FALSE
[477,] TRUE TRUE
[478,] TRUE TRUE
[479,] FALSE FALSE
[480,] FALSE FALSE
[481,] TRUE TRUE

mean(apply(wtcfit$predicted.match, 1, any)) #Fraction for which something is right

[1] 0.7941788

mean(apply(wtcfit$predicted.match, 1, all)) #Fraction entirely right

[1] 0.6839917

colMeans(wtcfit$predicted.match) #Fraction src/target, respectively

source recipient
0.7234927 0.7546778

Despite its simplicity, this and other checks (not shown) suggest that the model seems to do extremely well at
recovering the microdynamics of the WTC radio communication networks. We thus use it for our experiments,
below.

2.2 The McFarland Classroom Model

As a second base case, we will make use of data collected by Dan McFarland (and published in Bender-deMoll
and McFarland (2006)) on interaction among students and instructors within a high school classroom. (Note
that the data employed here has been slightly modified from the original for illustrative purposes, in that
small timing adjustments have been made to separate closely spaced events; those interested in using it for
purposes other than practice are directed to the above paper in the Journal of Social Structure.) To see the
event data itself, we may print it as follows:

19

head(Class)

StartTime FromId ToId
1 0.135 14 12
2 0.270 12 14
3 0.405 18 12
4 0.540 12 18
5 0.675 1 12
6 0.810 12 1

tail(Class)

StartTime FromId ToId
687 50.426 1 3
688 50.547 3 1
689 50.668 6 17
690 50.789 6 17
691 50.910 17 6
692 50.920 NA NA

As before, we have three columns: the event time, the event source (numbered from 1 to 20), and the event
target (again, numbered 1 to 20). In this case, event time is given in increments of minutes from onset of
observation. Note that the last row of the event list contains the time at which observation was terminated;
it (and only it!) is allowed to contain NAs, since it has no meaning except to set the period during which
events could have occurred. Where exact timing is used, the final entry in the edgelist is always interpreted
in this way, and any source/target information on this row is ignored.

In addition to the Class edgelist, we also observe the covariates ClassIsTeacher (an indicator for instructor
role) and ClassIsFemale (an indicator for gender). Visualizing the data in time-aggregate form gives us the
following:
ClassNet <- as.sociomatrix.eventlist(Class, 20)
gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +

ClassIsTeacher, vertex.cex = 2, edge.lwd = ClassNetˆ0.75)

20

A dynamic visualization for this data is also available in the above-cited paper, and is well worth examining!
(The ndtv package in statnet can be used to produce visualizations of this kind.)

2.2.1 Fitting a Model to the Classroom Data As above, we work with a model that we might obtain
at the end of our modeling process, that incorporates a number of effects. These include the following:

• A basic pacing effect, and both sender and receiver effects for teachers (versus students);
• Egocentric recency effects for incoming and outgoing communication;
• Effects for classroom conversational norms, including turn-taking, baton passing, and sequential address.

(Note that a gender effect was evaluated, but not selected in the final model. However, we will use the
covariate in some of our investigations.) We fit the model like so:
set.seed(13) #To ensure that our later results can be reproduced
classfit <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec",

"RRecSnd", "RSndSnd", "PSAB-BA", "PSAB-AY", "PSAB-BY"), covar = list(CovSnd = cbind(ClassIntercept,
ClassIsTeacher), CovRec = ClassIsTeacher), ordinal = FALSE,
hessian = TRUE)

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics

summary(classfit)

Relational Event Model (Temporal Likelihood)

21

Estimate Std.Err Z value Pr(>|z|)
RRecSnd 2.430697 0.155292 15.6524 < 2.2e-16 ***
RSndSnd -0.984633 0.144654 -6.8068 9.979e-12 ***
CovSnd.1 -4.983918 0.084196 -59.1943 < 2.2e-16 ***
CovSnd.2 1.257292 0.084967 14.7975 < 2.2e-16 ***
CovRec.1 -0.745119 0.136612 -5.4543 4.917e-08 ***
PSAB-BA 4.623684 0.137503 33.6261 < 2.2e-16 ***
PSAB-BY 1.677832 0.164940 10.1724 < 2.2e-16 ***
PSAB-AY 2.870517 0.103103 27.8411 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 2803.662 on 684 degrees of freedom

Chi-square: 3183.558 on 7 degrees of freedom, asymptotic p-value 0
AIC: 2819.662 AICC: 2819.874 BIC: 2855.968

The model effects may be broadly interpreted as follows: * Egocentically recent incoming partners are
high-rate targets for outgoing communication, but ego tends to “walk” communication around the room by
being less likely to target those to whom they have most recently directed communicative acts; * Teachers
initiate communications at a higher rate than students, but are somewhat less attractive targets; * As with
the WTC network, turn-taking is important (albeit somewhat less so), with sequential address playing a
much larger role in the classroom and baton passing also being common.

2.2.2 Assessing the Classroom Model As above, we only consider a minimal assessment here, but verify
that the model is able to capture local dynamics sufficiently to be useful. We again examine the ranks of our
predicted events, and the extent to which the events that were observed were seen as likely:
hist(classfit$observed.rank) #Histogram of ranks (low is good)

22

Histogram of classfit$observed.rank

classfit$observed.rank

F
re

qu
en

cy

0 100 200 300 400

0
10

0
20

0
30

0
40

0
50

0

Plot the ECDF of the observed ranks
plot(ecdf(classfit$observed.rank/(20 * 19)), xlab = "Prediction Threshold (Fraction of Possible Events)",

ylab = "Fraction of Observed Events Covered", main = "Classification Accuracy")
abline(v = c(0.05, 0.1, 0.25), col = 2)

23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classification Accuracy

Prediction Threshold (Fraction of Possible Events)

F
ra

ct
io

n
of

 O
bs

er
ve

d
E

ve
nt

s
C

ov
er

ed

The model does not do quite as well as the WTC model, but we do see that most events are in the top
fraction of those predicted. Although the exact match statistic is a difficult one (we would be surprised if
such a simple model were always able to tell who will interact with whom next in a high school classroom),
we also see that the model is reasonable:
mean(apply(classfit$predicted.match, 1, all)) #Exactly right about 33%

[1] 0.3299566

mean(apply(classfit$predicted.match, 1, any)) #Get one party exactly right 52%

[1] 0.5166425

colMeans(classfit$predicted.match) #Better at sender than receiver!

FromId ToId
0.5050651 0.3415340

Given more data, the model could probably be improved (see e.g. (DuBois et al. 2013)), but it is useful
enough for present purposes.

Section 3. In Silico Knockout (and Up, and Down) Experiments with REMs
To perform in silico experiments, we need to be able to simulate realizations (interaction sequences) from
a REM. In addition to fitting REMs, relevent has tools for simulating from them. These work a bit like
the simulate commands in the ergm library, in that they can be used in two modes: we can simulate draws
from a fitted rem.dyad model; or we can simulate draws from an a priori specified model. For now, let’s
consider this first case.

The syntax for the rem.dyad simulate method is as follows:

24

simulate(object, nsim = object$m, seed = NULL, coef = NULL, covar = NULL,
verbose = FALSE, ...)

object here is our fitted model object, nsim is the number of events to draw from the model (the length of
the event series to simulate), seed is an optional random number seed to specify, coef is a (here optional)
coefficient vector, covar is our usual covariate list, and verbose says whether we want to print tracking
information. By default, the coefficients used are taken from the fitted model, but specifying coef will allow
them to be overridden (a useful tool for performing scenario analyses, as illustrated below). Likewise, the
function will by default simulate as many events as were in the original data, but this can be altered by
changing nsim. Note that we do have to specify any covariates being used when simulating, both because
rem.dyad does not save the input covariates, and because (even if it did) the size of the covariate set in some
cases depends on the number of events to be produced.

Let’s begin with a simple example: simulating a synthetic replicate of our original data, using our final model.
For this, we only need pass our model, and the covariates used:
set.seed(13)
simwtc <- simulate(wtcfit, covar = list(CovInt = WTCPoliceIsICR),

verbose = TRUE)

Working on event 25 of 481
Working on event 50 of 481
Working on event 75 of 481
Working on event 100 of 481
Working on event 125 of 481
Working on event 150 of 481
Working on event 175 of 481
Working on event 200 of 481
Working on event 225 of 481
Working on event 250 of 481
Working on event 275 of 481
Working on event 300 of 481
Working on event 325 of 481
Working on event 350 of 481
Working on event 375 of 481
Working on event 400 of 481
Working on event 425 of 481
Working on event 450 of 481
Working on event 475 of 481

We now have a simulated event sequence from the wtcfit model! Let’s see what it looks like:
head(simwtc)

[,1] [,2] [,3]
[1,] 0.0002470765 16 32
[2,] 0.0003174985 32 16
[3,] 0.0003176928 16 32
[4,] 0.0003184215 32 16
[5,] 0.0003284832 16 32
[6,] 0.0003572302 32 16

tail(simwtc)

[,1] [,2] [,3]
[476,] 0.05079416 35 3
[477,] 0.05082861 3 35

25

[478,] 0.05102184 35 3
[479,] 0.05120952 3 35
[480,] 0.05175625 21 11
[481,] 0.05180419 25 24

As we can see, we now have an event list that looks just like our original data (but that is synthetic).
Such synthetic replicates can be used for many purposes, including exploratory simulation, model adequacy
checking, and aiding in model interpretation. Below, we use them to illustrate simple in silico “knock-out,”
“knock-up,” and “knock-down” experiments.

3.1 Probing the Effect of Turn-Taking on Coordinator Emergence via Knockout

A distinctive aspect of the WTC radio communication networks (including the one studied here) is the
central role of coordinators in holding the network together: a small number of individuals are responsible
for the majority of communication volume, and they play a pivotal role in coordinating action by brokering
between third parties. What drives the emergence of these coordinator roles? This is a complex question,
WTC communication dynamics are clearly driven by many, interacting factors. To help make sense of such
complexities, it can sometimes be useful to probe the role of specific mechanisms using in silico knock-out
experiments.

In an in silico knock-out experiment, we take one or more specific mechanisms in our model and remove it,
leaving all other mechanisms as they are. We then simulate realizations from our model with the selected
mechanisms “knocked out,” comparing them with the full model (our control). The difference in behavior
can provide insight into the role of the knocked out mechanisms in the full model, just as differences between
the development of mice mouse with a knocked-out gene versus control mice provides insight into the role of
the gene in development.

It is important to emphasize that we do not refit the model with the terms removed, just as we do not use
evolutionary selection to breed mice that are adapted to their knocked-out gene in a biomedical knock-out
experiment: that would probe whether the remaining effects are sufficient to obtain the targeted behavior,
but would not probe the role of the targeted effects on that behavior in the data-selected model (our current
best proxy for how the social dynamics operate). However, models of that kind can sometimes be useful in
and of themselves as a point of comparison. For instance, in the WTC case, a natural hypothesis might
be that coordinators are simply ICRs, and that emergent coordination arises directly from differential ICR
activity. To probe this, may fit a “sufficiency” model containing only this effect, again to serve as a basis for
comparison. This is not a knock-out model, because we are not leaving the covariate effect as it was in the
joint model - it instead represents the best model that can be had given the single effect. (In the biomedical
analogy, this would be like knocking out all genes for some pathway other than one, and then breeding mice
with the suppressed genes to select for recovery of function.)

Fitting the ICR-only model is simple, and can be done using a variant of the above approach:
First ICR effect - total interaction
wtcicr <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt"),

covar = list(CovInt = WTCPoliceIsICR), hessian = TRUE)

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics

summary(wtcicr)

Relational Event Model (Ordinal Likelihood)

Estimate Std.Err Z value Pr(>|z|)
CovInt.1 2.104464 0.069817 30.142 < 2.2e-16 ***

26

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 6193.998 on 480 degrees of freedom

Chi-square: 727.0499 on 1 degrees of freedom, asymptotic p-value 0
AIC: 6195.998 AICC: 6196.007 BIC: 6200.174

The effect is large, though we note that the BIC is large compared to our selected model. This is clearly a
crude model, but that’s fine: we are not interested in it as a general proxy for out social process, but as a
“gendanken explanation” - the hypothetical best model we can fit from a single driving mechanism.

For our knock-out model, we remove the turn-taking effect (the AB-BA P-shift). Turn-taking is the most
central element of radio SOP, and at first blush has little to do with hub formation. However, turn-taking has
the effect of keeping conversations among the same partners, “piling up” communication on a small number
of individuals. In concert with other effects (e.g., preferential attachment), this could conceivably lead to the
formation of emergent hub roles not associated with ICR status. Alternatively, any impact of turn-taking
could simply be to amplify differences in centrality between ICRs and other actors. If indeed AB-BA shift
effects drive emergent hub formation per se, knocking them out should enhance the centrality difference
between ICRs and others relative to control; by contrast, if AB-BA shifts in the empirically calibrated system
are “amplifying” ICR effects, knocking them out should reduce them relative to the baseline control. Finally,
our ICR-only model acts as a type of positive control: since, by design, ICR effects are the only term in
the model, they represent what we might expect in a world in which communication is based entirely on
ICR-status.

We simulate all three models using the simulate command, using the correlation between ICR status
and betweenness in the time-aggregated communication network as our outcome measure. Our simulated
trajectories are by default as long as the original trajectories to which the models were fit (but are simulated
from “time 0”). Because the process is somewhat slow, we limit ourselves here to 25 replications.
set.seed(13)
reps <- 25 #Number of replicate series to take
kocoef <- wtcfit$coef #Knock-out coefs
kocoef["PSAB-BA"] <- 0
ICRBetCor <- matrix(nrow = reps, ncol = 3)
sim <- mclapply(1:reps, function(i) {

Run our simulation in parallel, if possible
set.seed(i + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance
print(i) #A progress indicator
outvec <- vector() #Our output, to be returned
simwtc <- simulate(wtcicr, covar = list(CovInt = WTCPoliceIsICR)) #ICR only
outvec[1] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,

37)), WTCPoliceIsICR)
simwtc <- simulate(wtcfit, covar = list(CovInt = WTCPoliceIsICR)) #Final
outvec[2] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,

37)), WTCPoliceIsICR)
simwtc <- simulate(wtcfit, covar = list(CovInt = WTCPoliceIsICR),

coef = kocoef) #Knockout
outvec[3] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,

37)), WTCPoliceIsICR)
outvec #Return the output

}, mc.set.seed = FALSE, mc.cores = mc.cores)
ICRBetCor <- t(sapply(sim, "[")) #Extract the results

Visualize the results
boxplot(ICRBetCor, names = c("ICROnly", "Full", "NoABBA"))
abline(h = cor(betweenness(as.sociomatrix.eventlist(WTCPoliceCalls,

27

37)), WTCPoliceIsICR), col = 2)

ICROnly Full NoABBA

0.
2

0.
4

0.
6

0.
8

1.
0

Verify that both means are indeed above the control
t.test(x = ICRBetCor[, 1], y = ICRBetCor[, 2]) #ICR only vs. control

Welch Two Sample t-test

data: ICRBetCor[, 1] and ICRBetCor[, 2]
t = 11.898, df = 24.515, p-value = 1.122e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2681107 0.3804973
sample estimates:
mean of x mean of y
0.979405 0.655101

t.test(x = ICRBetCor[, 3], y = ICRBetCor[, 2]) #Knockout vs. control

Welch Two Sample t-test

data: ICRBetCor[, 3] and ICRBetCor[, 2]
t = 5.1086, df = 38.334, p-value = 9.256e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.09650456 0.22312955
sample estimates:
mean of x mean of y

28

0.814918 0.655101

We can see here that (perhaps unsurprisingly) the ICR-only model overstates the relationship between
occupying an ICR and having high betweenness; our full model does much better, generally producing
realizations that cover the observed data (though, with only a few replicates, you may find that it sometimes
doesn’t!). What happens when we “turn off” the AB-BA shift? It turns out that this greatly increases the
relative betweenness of ICRs, telling us that the AB-BA shifts are helping to play a role in keeping ICRs
from inappropriately dominating the network. Why should turn taking matter here? The short answer is
that turn-taking effects create opportunities for non-ICR responders to gain airtime, and end up as emergent
coordinators. Taking out the AB-BA effect reduces emergent coordination, which in turn increases the
relative centrality of the few individuals in institutionalized coordinative roles. This would have been very
difficult to infer from simply examining trajectories, but can be easily seen using computational experiments.

3.2 Knocking Turn-taking Up and Down

Just as we can learn a lot about the function of a mechanism by turning it on or off, we can also learn a lot by
dialing it up or down. Such “knock-up/knock-down” experiments not only give us more quantitative insight
into what happens when a mechanism is weakened, but also let us probe what happens when a mechanism is
strengthened.

As an illustration, let us return to our above knock-out experiment. In that experiment, we removed the
AB-BA P-shift effect (turn-taking), and saw that this enhanced the relative centrality of ICRs (putatively by
inhibiting the rise of emergent coordinators). If this is so, does further enhancement of turn-taking result in
even more decoupling of the ICR/coordinator association? And does weakening the effect have a smooth
impact on the relationship, or is there some critical point at which turn-taking reciprocity is strong enough
to override the impact of pre-existing roles? To probe this question, we take our observed AB-BA coefficient,
and modify it both up and down, simulating interaction sequences in each case to see how turn-taking relates
to our outcome of interest.
set.seed(13)
reps <- 25 #Number of replicate series to take
eff <- wtcfit$coef["PSAB-BA"] * 1.5ˆ(-3:3) #AB-BA effects to examine
sim <- mclapply(1:reps, function(j) {

Simulate over replications
set.seed(j + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance
outv <- vector() #Local output vector
for (i in 1:length(eff)) {

Walk through conditions
cat("Working on replication", j, "on effect", eff[i],

"\n")
kcoef <- wtcfit$coef #Knock-up/down coefs
kcoef["PSAB-BA"] <- eff[i] #Substitute the current effect strength
Simulate from the target
simwtc <- simulate(wtcfit, covar = list(CovInt = WTCPoliceIsICR),

coef = kcoef)
outv[i] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,

37)), WTCPoliceIsICR)
}
outv #Return the result

}, mc.set.seed = FALSE, mc.cores = mc.cores)
KUDBetCor <- t(sapply(sim, "[")) #Extract the results
KUDBetCor[is.na(KUDBetCor)] <- 0 #Consider no variance = no relationship

Visualize the results
boxplot(KUDBetCor, names = paste0("theta=", round(eff, 1)))
abline(h = cor(betweenness(as.sociomatrix.eventlist(WTCPoliceCalls,

29

37)), WTCPoliceIsICR), col = 2)

theta=1.6 theta=3.6 theta=8 theta=18

0.
0

0.
2

0.
4

0.
6

0.
8

Depending on your settings, you may see warnings arising from the fact that betweenness in some cases has no
variance: what is happening (as inspection of the trajectories reveals) is that a sufficiently high AB-BA effect
leads to a transcript composed of a single conversation between two individuals; since there is no brokerage in
such a network (and no coordination), betweenness is zero for all individuals. We take the correlation to be
zero here, since there is no meaningful association between coordination and ICR status in these networks.

Overall, what we find is a very striking pattern: the relationship between betweenness and ICR status is
high near and below the observed AB-BE effect strength (increasing as the effect is weakened), but collapses
catastrophically when the effect exceeds a threshold not far beyond the observed value. As noted, these
networks become “hyper-centralized,” with turn-taking norms becoming so strong that only a handful of
individuals ever communicate. Such networks have no coordination at all, and are obviously quite pathological.

What do we learn from this? On the low-θ side, our knock-down experiment suggests that weakening
turn-taking norms leads smoothly to a more ICR-dominated world (plausibly by reducing the supply of
emergent coordinators); cutting the observed effect strength in half seems adequate to saturate in this
direction. On the knock-up side, further increases in the strength of turn-taking quickly lead to catastrophic
concentration of communication volume in small numbers of dyads, resulting in networks that are both
implausible and non-functional. From this, we may glean that the observed strength of turn-taking reciprocity
norms are about as strong as they can be without deleterious effects: we could imagine them to be stronger,
but not much stronger. It is interesting to conjecture that the organizational routines embedded in radio
SOP are thus approximately optimized to push this behavior close to its limit (e.g., to enhance accuracy
by extensive confirmation of communications), though we cannot address that with this data. But we can
certainly see that a plausible alternative model for this system could have lower levels of turn-taking, but not
much higher (at least, not without adjusting other mechanisms to compensate).

30

Section 4. Knocking In Hypothetical Mechanisms
In addition to removing effects, we can also ask what happens if new effects are introduced to an empirically
calibrated model. These “knock-in” experiments can provide additional evidence for how a specific mechanism
works, and can also be useful for assessing hypothetical interventions.

4.1 Knocking In Gender Effects On Initiation Rate

For instance, let us consider the McFarland classroom model. As noted above, participant gender information
is available, but a gender effect was not found in the final model; controlling for teacher roles and endogenous
dynamics, we do not observe a net tendency for male and female classroom participants to behave differently.
We may consider, however, what impact such a difference would be expected to have on a classroom like the
one observed, were it present. Naively, one might expect a simple, linear effect: more propensity to interact
produces proportionately more interaction. However, the presence of endogenous social dynamics changes
the picture, possibly amplifying or suppressing these effects. There may also be emergent effects, e.g. in
teacher-student interaction, arising from differences in student communication. While we could imagine
probing these questions with an entirely de novo model, starting with an empirically calibrated baseline
allows us to probe the impact of hypothetical mechanisms within a more realistic setting.

To probe this question, we must first decide what about the system we want to measure. Here, we’ll keep it
simple, counting the number of events (communication volume) involving each individual, cross-classified by
whether ego is the sender/reciever, ego’s gender, and ego’s classroom role (teacher/student). Note that we
would expect these counts to be affected by the demographics of the classroom (ceteris paribus); however, we
will be comparing them across conditions holding the classroom constant, so this is not an immediate concern.
(If we were comparing across classrooms, however, we would probably want to normalize them.) To simplify
analysis, it is helpful to create a function to tabulate the event data in this way. Here’s one way to do it:
#Create a convenience function to tabulate communication by role and gender
classTab<-function(el){

if(is.data.frame(el)) #If a data.frame, coerce to matrix form
el<-as.matrix(el)

if(is.list(el)) #If a list, run this on every entry
return(t(sapply(el,classTab)))

#If still here, tabulate the data, label, and return
v<-as.vector(table(rep(as.factor(c("Snd","Rec")),each=NROW(el)), as.factor(c("Male","Female"))[1+ClassIsFemale[el[,-1]]], as.factor(c("Student","Teacher"))[1+ClassIsTeacher[el[,-1]]]))
names(v)<-c("RFS","SFS","RMS","SMS","RFT","SFT","RMT","SMT")
v

}

#Demonstrate on the observed data
obsvol<-classTab(Class[-NROW(Class),]) #Last row is the observation terminus

Observe that the function returns a vector of counts, with category succinctly described by a three-letter
code ((R)eceiver/(S)ender; (F)emale/(M)ale; and (S)tudent/(T)eacher). Because both instructors are male,
there are no RFT and SFT events - we remove these categories from our analysis below. Our interest will
then be in comparing these counts in models where gender differences in sending rates have been knocked
in, to the baseline control. Incidentally, while it is still sometimes possible to draw useful conclusions about
differences in outcome behavior when the baseline model does not match the data (a common situation e.g. in
computational chemistry), it is a good idea to check. Let’s compare the control model to the data on our
statistics of interest, and verify that it can do a credible job of reproducing this feature of the data.
set.seed(13)
Create 25 replicate simulations of the class
reps <- 25
classsim <- mclapply(1:reps, function(i) {

set.seed(i + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance

31

simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,
ClassIsTeacher), CovRec = ClassIsTeacher))

}, mc.set.seed = FALSE, mc.cores = mc.cores)
simvol <- classTab(classsim) #Obtain the communication volumes

boxplot(simvol) #Plot the distributions
points(obsvol, pch = 19, cex = 2) #Are we within the range?

RFS SFS RMS SMS RFT SFT RMT SMT

0
10

0
20

0
30

0
40

0

We can see that the observed cases are within the range of the simulations, and the overall pattern is preserved.
Thus, we regard the model as adequate for our target of interest.

To perform our knock-in study, we now want to take our baseline control, and add a new effect for the
propensity to initiate interaction, by gender. There are many ways to parameterize such an effect, but it is
helpful to do so in a way that is both easy to interpret, and that does not radically alter other aspects of the
model (e.g., the mean propensity of students to initiate communication). Here, we choose to add a sending
covariate whose value is 0.5 for female students, and -0.5 for male students (i.e., a contrast); such a term
creates a net difference of θ between genders, without creating a net shift between groups. Note, though,
that this will still create a net shift in the average sending rate in the student population, unless the gender
balance is exactly even. In this network, approximately half of the students are female (8 female students to
10 male students), so this shift will be fairly small. Since reparameterizing to make it exactly zero would make
the term asymmetric and harder to interpret at the individual level, we leave it as-is - but such unintended
consequences are something to keep in mind when designing and interpreting in silico experiments.

Now, how does our experiment work? We vary the strength and direction of our hypothesized gender
difference, at each level simulating a sample of replicate sequences and obtaining the communication volumes;
comparing these allows us to see how the hypothesized effect changes the behavior of the system as a whole.
To add the effect to our base model (classfit), we can simply add the additional covariate, and use the coef

32

argument of the simulate function to pass a coefficient vector that combines the original coefficients and the
coefficient or the new term. (Note that we have to be sure to add the term in the right place! rem.dyad
orders its effects in a specific way, so looking at the model object will tell you where you need to insert the
coefficient of interest.) We accumulate the mean communication volumes using classTab at each level of
our treatment (the gender effect), allowing us to see how the former changes with the latter. This may be
accomplished using a simple R script, like so:
set.seed(13) #Set seed for replication
ClassFMS <- (!ClassIsTeacher) * (ClassIsFemale - 0.5) #Create the F/M contrast term
co <- c(classfit$coef[1:4], 0, classfit$coef[5:8]) #Set up the base coefficients
mcomvol <- vector() #Mean communication volumes
eff <- c(-2, -1, -0.5, -0.1, 0, 0.1, 0.5, 1, 2) #Effect strengths (treatments)
reps <- 25 #Replications at each level
for (i in 1:length(eff)) {

Walk through the levels
cat("Working on eff =", eff[i], "\n")
co[5] <- eff[i] #Set the gender effect
sim <- mclapply(1:reps, function(j) {

Accumulate replicates
set.seed(j + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance
el <- simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,

ClassIsTeacher, ClassFMS), CovRec = ClassIsTeacher),
coef = co)

classTab(el)
}, mc.set.seed = FALSE, mc.cores = mc.cores)
rcomvol <- t(sapply(sim, "["))
mcomvol <- rbind(mcomvol, colMeans(rcomvol)) #Accumulate the average

}

We now have our communication volumes, with gender effects knocked in! Observe that we also have our
baseline control, which arises when our new coefficient is set to zero - thus, we retain a point of comparison.
To see the results, let us see how our coefficient is related to the mean communication volumes.
mcomvol #Print the mean communication volumes

RFS SFS RMS SMS RFT SFT RMT SMT
[1,] 175.32 44.20 463.48 527.68 0 0 53.20 120.12
[2,] 218.80 101.20 405.32 395.60 0 0 67.88 195.20
[3,] 242.68 142.88 379.24 326.00 0 0 70.08 223.12
[4,] 269.12 190.68 352.72 266.92 0 0 70.16 234.40
[5,] 277.20 203.84 340.56 243.88 0 0 74.24 244.28
[6,] 276.80 205.12 340.04 234.60 0 0 75.16 252.28
[7,] 317.08 271.92 304.08 181.64 0 0 70.84 238.44
[8,] 341.36 341.12 278.64 132.68 0 0 72.00 218.20
[9,] 402.56 493.72 231.24 62.76 0 0 58.20 135.52

#Plot communication volumes by type and effect size
plot(0,0,type="n",xlim=range(eff),ylim=range(mcomvol[,-(5:6)]), xlab="Gender Effect", ylab="Communication Volume", font.lab=2, font.axis=2)
abline(v=0,lty=3) #Mark the control case
for(i in 1:6) #Plot each data series
lines(eff,mcomvol[,-(5:6)][,i],type="b",col=i,lwd=2)

legend("top",lwd=2,col=1:6,legend=colnames(mcomvol)[-(5:6)],text.font=2,bg="white")

33

−2 −1 0 1 2

10
0

20
0

30
0

40
0

50
0

Gender Effect

C
om

m
un

ic
at

io
n

Vo
lu

m
e

RFS
SFS
RMS
SMS
RMT
SMT

The mean communication volumes show a number of striking patterns. As expected, student sending volume
by gender (SFS, SMS) scale with the gender effect - increasing the propensity to initiate communication does
drive volume accordingly. However, we also see substantial (but somewhat flatter) changes in student receipt
by gender (RFS, RMS), despite the lack of any effect for homophily or target selection. This is the result
of reciprocity arising from turn-taking and recency mechanisms: when female (respectively male) students
initiate interaction at a higher rate, they produce a disproportionate number of targets who are prone to
reciprocate, leading to a higher incidence of incoming communication. Communication targets are thus
indirectly biased by the initiation pattern, producing what at first blush looks like actively gendered target
selection. Interestingly, we see a rather different spillover into teacher communication (RMT, SMT, recalling
that both teachers are male). Unlike their students, the teachers show a largely symmetric, non-monotone
pattern in both sending and receipt as a function of gender effect strength. Highest in the control condition,
teacher communication declines when student propensity to initiate interaction shifts in either direction.
Why? The obvious answer is that, as communication intensity becomes concentrated in a small number of
increasingly loquacious students, who end up dominating the classroom by talking amongst themselves -
conversational dynamics eventually begin to shut out even the teachers, who have fewer occasions to break in.
Such emergent effects are difficult to anticipate by contemplating raw interaction propensities, but can be
easily identified using simulation experiments.

Section 5. Probing Covariates, and Dose/Response Curves
The previous sections have focused on experiments that change mechanisms - adding them, removing them,
or retuning them - as a way to understand model behavior. What about changing covariates? As covariates
often tell us about the context in which action takes place, and/or the attributes of those engaging in it,
changes of covariate are a powerful tool for studying the potential impact of differing circumstances on model
behavior. This can be used to study potential generalizability of the model (does it continue to behave
plausibly when we change the population?), to gain substantive insights via “what-if” scenario evaluation, or

34

to plan interventions by examining the apparent sensitivity of the system to a possible change. Here, we will
show some examples of this type of manipulation.

5.1 Changing Roles

In section 3, we showed how an in silico knock-out study could be used to gain insights into model behavior.
Another useful strategy can be to simulate trajectories from a fitted model with alternative choices of
covariates. For instance, what might we expect if we replaced the teachers in our classroom with students?
This anarchic state of affairs can be probed by conditional simulation with a different set of covariates:
set.seed(13)
ClassSim <- simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,

ClassIsTeacher), CovRec = ClassIsTeacher))
AnarchSim <- simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,

rep(0, 20)), CovRec = rep(0, 20)))

head(AnarchSim) #Examine the trajectory

[,1] [,2] [,3]
[1,] 0.1001036 16 4
[2,] 0.1288086 9 17
[3,] 0.1718126 17 9
[4,] 0.3178658 9 17
[5,] 0.3293235 9 14
[6,] 0.4234096 9 8

tail(AnarchSim)

[,1] [,2] [,3]
[687,] 58.09008 1 16
[688,] 58.15661 1 17
[689,] 58.25372 2 3
[690,] 58.30740 7 8
[691,] 58.35169 8 7
[692,] 58.46455 7 8

The new trajectory is driven by the same mechanisms as the old, but the setting has now changed. What is
the impact?
Plot the network structure of the simulations, and the
observed data
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +

ClassIsTeacher, vertex.cex = 2, edge.lwd = ClassNetˆ0.75,
main = "Observed Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 +

ClassNet))ˆ3))
SimNet <- as.sociomatrix.eventlist(ClassSim, 20) #Create a network from the fitted sim
gplot(SimNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +

ClassIsTeacher, vertex.cex = 2, edge.lwd = SimNetˆ0.75, main = "Simulated Network",
edge.col = rgb(0, 0, 0, (1 - 1/(1 + SimNet))ˆ3))

AnarchNet <- as.sociomatrix.eventlist(AnarchSim, 20) #Create a network from the anarchy sim
gplot(AnarchNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +

ClassIsTeacher, vertex.cex = 2, edge.lwd = AnarchNetˆ0.75,
main = "Anarchic Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 +

AnarchNet))ˆ3))

Plot the valued degree distributions

35

plot(density(degree(ClassNet), bw = "SJ"), lwd = 3, main = "Degree Distribution")
lines(density(degree(SimNet), bw = "SJ"), lwd = 3, col = 2)
lines(density(degree(AnarchNet), bw = "SJ"), lwd = 3, col = 4)
legend("topright", legend = c("Obs", "Sim", "Anarch"), lwd = 3,

col = c(1, 2, 4))

Observed Network Simulated Network

Anarchic Network

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0 Degree Distribution

N = 20 Bandwidth = 8.524

D
en

si
ty

Obs
Sim
Anarch

Comparing the plots, we can see several things. First, we note some limitations of our fitted model: while it
does relatively well at ensuring that the teachers are central, enduring that many of the strongest interactions
are student-teacher interactions, creating a network in which strong interactions are localized to a fairly small
number of (highly reciprocal) dyads, and reproducing the overall valued degree distribution, it also produces
a large “halo” of weak side-interactions among the students that is not seen in the observed network. This
suggests the potential for further model improvement.

Turning to our “anarchy in the classroom” model, however, we see that the effect of removing teachers is
substantively reasonable. The nodes that were formerly teachers no longer have any particular significance,
and are now well-mixed with their peers; likewise, without the teachers to focus attention, the network is as a
whole much less centralized. Thus, the model does plausibly produce many of the effects one would expect to
see from such a change in group composition. Such scenario-based probes can be a useful tool for assessing
model behavior, as well as being of possible substantive interest in and of themselves.

5.2 Dose-Response Curves for Hypothetical Interventions

A particularly useful application of covariate based simulations is to predict the “dose-response” curves for
hypothetical interventions: i.e., given a certain level of intervention, what is the corresponding response on
the variable of interest? While in silico estimates of outcomes may be primitive, a reasonable model may give
a far better estimate e.g. of how many individuals need to be reached with a putative intervention to have an
effect than one would obtain from intuition or limited case experience. In a study design context, this can

36

provide valuable information that may allow one to avoid accidentally sabotaging promising interventions
due to insufficient dosing.

The approach here is straightforward: as before, we modify one or more covariates, in a manner that reflects
the nature of the intended intervention. Frequently, it will be sensible to have a covariate reflecting the
variable acted upon (or an indicator for being an intervention target), and to take the number of targets as
the effective “dose.” Evaluating outcome distributions by dose thus yields the desired information.

Here, we illustrate this notion with a simple (and somewhat contrived) case involving the WTC model.
Communication during emergencies is costly and distracting, and coordinating the activities of others’ is a
difficult skill that is hard to execute under fire. This is, of course, one reason that response organizations have
ICRs, who are both equipped and trained to handle this type of task. Consider a case in which one’s objective
is to have as much communication as possible handled by ICRs, to reduce the impact of coordination on the
broader organization. Obviously, one can make all members of the organization ICRs, but this too is costly,
and defeats the purpose; however, one might speculate that increasing the numbers of ICRs would improve
performance, and be interested in determining the relationship between the number of ICRs in the network
and the fraction of communication handled by ICRs.

Here, we examine this issue by computing a dose-response curve for the fraction of communicative events
handled in some way by ICRs, as a function of the number of ICRs in the network. To implement this, we
replace the WTCPoliceIsICR vector with a new vector having the desired number of ICRs (which we vary
from 1 to 18). Since the model is otherwise permutation invariant, we can add the ICRs in any order, and
indeed simply use the first k entries to place k ICRs.
set.seed(13)
reps <- 25 #Number of replicate series to take
eff <- c(1/3, 1:6) * 3 #Number of ICRs to place
sim <- mclapply(1:reps, function(j) {

Simulate over replications
set.seed(j + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance
outv <- vector() #Local output vector
for (i in 1:length(eff)) {

Walk through conditions
cat("Working on replication", j, "on effect", eff[i],

"\n")
NewICR <- rep(1:0, times = c(eff[i], 37 - eff[i]))
Simulate from the target
simwtc <- simulate(wtcfit, covar = list(CovInt = NewICR))
d <- degree(as.sociomatrix.eventlist(simwtc, 37))
outv[i] <- d %*% NewICR/sum(d)

}
outv #Return the result

}, mc.set.seed = FALSE, mc.cores = mc.cores)
WTCICRShare <- t(sapply(sim, "[")) #Extract the results

Visualize the results
boxplot(WTCICRShare, names = eff)
abline(h = degree(as.sociomatrix.eventlist(WTCPoliceCalls, 37)) %*%

WTCPoliceIsICR/(2 * NROW(WTCPoliceCalls)), col = 2)

37

1 3 6 9 12 15 18

0.
0

0.
2

0.
4

0.
6

0.
8

The results first confirm that the observed value is within the range of the simulated behavior for the
baseline control (there are 3 ICRs in the observed data set). Secondly, the simulations show a very orderly
dose-response relationship, increasing rapidly but sublinearly until the network contains approximately 12
ICRs, and then tapering off. Although this is a large fraction of the network, the higher activity level of
ICRs gives them a disproportionate share of the traffic; to place 60% of the traffic on ICRs, for instance,
one needs only 6-9 ICRs (16-24%) of the network. With this information in hand, one would have a much
more principled basis for deciding how many ICRs to create in a comparable group than e.g. simply sticking
with what was done before, or making a guess about the number that would be sufficient. While this specific
example is perhaps fanciful (it is unlikely that an organization would or should create ICRs on this basis), it
illustrates an approach that can be profitably applied to a range of study design problems.

Section 6. Cutting In: Intervening in Trajectories
So far, we have considered only cases in which our trajectories begin tabla rasa, with the model simulating
them from scratch. In other cases, however, we may be interested in what happens when we interrupt
action mid-stream. The simulate method for rem.dyad supports such cases by allowing us to pass an event
list containing history prior to the moment at which simulation begins - this is done using the edgelist
argument, which takes as input a matrix of the same form as standard rem.dyad data, interpreted as the
first m events in the sequence to be simulated. (Note, then, that if you want to simulate m2 additional events,
you need to set nsim=m+m2 to get what you want.) It is also possible to redraw timing for these observed
events (useful if they were observed without explicit timing information), or to keep the times and redraw
the events themselves (a more exotic option). Many applications of this functionality are possible, including
probes in which individuals are added/removed/changed mid-stream, specific events are added/removed, etc.
Here, we show one illustrative example, in which we make one individual unavailable partway through an
event sequence.

38

6.1 Taking a Teacher Out of the Classroom

In section 5.1, we considered a classroom where the teachers have been replaced by students. Here, we
will consider a less extreme scenario: half-way through the class, a randomly selected teacher will be
exogenously removed, and thus unavailable for interaction. What happens to the volumes of student/teacher
and student/student interaction in this scenario, versus a baseline control where no change is made? We
perform this experiment via three steps: first, we segment the original event list, selecting all observed
events in the desired interval to use as a prefix for our intended sequence; second, we create sender and
receiver covariates to mark the removed node (isolating them from further events); and then simulating
conditional realizations of the altered sequence and model. We compare this to control simulations with the
same structure, but in which the teacher is not removed.

We begin by defining our outcome function; this simply takes an input sequence and counts the number of
events that involve a student and a teacher, versus two students (respectively).
#Create a new convenience function to count student/student and student/teacher events
classTab2<-function(el){

if(is.data.frame(el)) #If a data.frame, coerce to matrix form
el<-as.matrix(el)

if(is.list(el)) #If a list, run this on every entry
return(t(sapply(el,classTab)))

#If still here, tabulate the data, label, and return
v<-c(ST=sum(ClassIsTeacher[el[,2]]|ClassIsTeacher[el[,3]]), SS=sum((!ClassIsTeacher)[el[,2]]&(!ClassIsTeacher[el[,3]])))
v

}

#Demonstrate on the observed data
classTab2(Class[-NROW(Class),]) #Last row is observational terminus

ST SS
313 378

We next select the prefix. Since the class is about 50 minutes (and time is encoded in minutes), we take
everything through the 25 minute mark.
ClassHalf <- Class[Class[, 1] < 25,] #Take all events in the first 25 min
NROW(ClassHalf) #347 events

[1] 347

We will then simulate sequences of equal length to the original class, conditioning on the first half. Our code
to do this task is as follows.
set.seed(13) #Set seed for replication
reps <- 50 #Replications
Create the coefficients, with space for new
sender/receiver terms
co <- c(classfit$coef[1:4], 0, classfit$coef[5], 0, classfit$coef[6:8])
sim <- mclapply(1:reps, function(i) {

Accumulate replicates
set.seed(i + ceiling(runif(1, 0, 1e+09))) #Set a seed for this instance
cat("Working on replication", i, "\n")
Removed <- rep(FALSE, length(ClassIsTeacher)) #Pick a teacher to remove
Removed[sample(which(ClassIsTeacher), 1)] <- TRUE
First, simulate with no removal
co[c(5, 7)] <- 0
el <- simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,

ClassIsTeacher, Removed), CovRec = cbind(ClassIsTeacher,

39

Removed)), coef = co, edgelist = ClassHalf)
outv <- classTab2(el[-(1:NROW(ClassHalf)),]) #Only consider second half
Now, simulate with removal
co[c(5, 7)] <- -50 #Rate essentially 0
el <- simulate(classfit, covar = list(CovSnd = cbind(ClassIntercept,

ClassIsTeacher, Removed), CovRec = cbind(ClassIsTeacher,
Removed)), coef = co, edgelist = ClassHalf)

outv <- c(outv, classTab2(el[-(1:NROW(ClassHalf)),]))
outv

}, mc.set.seed = FALSE, mc.cores = mc.cores)
stcomvol <- t(sapply(sim, "["))

So what is the effect of removing a random teacher? What would we expect it to be? Naively, removing one
of the teachers removes an interaction target, so we might expect the student/teacher volume to be cut in
half. On the other hand, we could also imagine that the endogenous social mechanisms driving classroom
interaction would lead interaction to be taken over by the remaining teacher, with little net loss. An extreme
version of this hypothesis would posit that there is, for this system, a characteristic amount of student/teacher
communication that is divvied up by the teachers, and when one is removed the other will take on the lost
fraction. Which view is more accurate? Let us see.
Visualize the results
boxplot(stcomvol, col = c(2, 2, 4, 4))
points(1:2, classTab2(Class[-c(1:NROW(ClassHalf), 692),]), pch = 19,

cex = 1.5)
legend("topleft", fill = c(2, 4), legend = c("Control", "Removal"))

ST SS ST SS

50
10

0
15

0
20

0
25

0
30

0

Control
Removal

40

How does teacher communication volume compare w/control?
hist(stcomvol[, 3]/stcomvol[, 1], xlab = "Removal / Control",

main = "Teacher Communication Volume Ratio Vs Control")
abline(v = 0.5, col = 2) #50% line

Teacher Communication Volume Ratio Vs Control

Removal / Control

F
re

qu
en

cy

0.4 0.6 0.8 1.0 1.2

0
2

4
6

8
10

mean(stcomvol[, 3]/stcomvol[, 1] > 0.5) #Fraction > 50%

[1] 0.78

We can immediately see from the first plot that the strong “conserved teacher volume” thesis is wrong:
removing a random teacher decreases student/teacher interaction (increasing student/student interaction
in the bargain - but remember that we have fixed the number of events, so this is inevitable!). Does this
imply that the naive, linear hypothesis is true? The second plot says otherwise: when we compare paired
observations (treatment versus control), we see that student/teacher communication volume is usually greater
than half of the control volume (about 75% of the time, in this case), with the median ratio being about 0.63.
(The difference of the mean from the 50% ratio is also significant.) So what we see in this case is a bit of a
compromise: removing a teacher from the classroom does markedly reduce student/teacher interactions, but
there is some tendency of the remaining teacher to pick up some of the lost volume. The system thus adjusts
to the disruption, but only partially.

Incidentally, our check on the adequacy of the model to reproduce the observed data (plotted points, first
figure) suggests that the data is in the range of the model behavior, but the model appears to somewhat
over-predict student/teacher interaction, and somewhat under-predict student-student interaction. While the
model is probably good enough to be useful, we might be inclined to try to improve it if we were pursuing
this outcome in detail. It is also useful here to remind ourselves that when we simulate our removal scenario,
we are by design examining what would be expected to happen (under the model) if the posited social
mechanisms carried on as they were. That can be a reasonable approximation, and even when it turns out

41

not to be true it can still be a very interesting hypothesis to consider. However, we should not expect that
it will hold in all situations: in some cases, an exogenous change to the social system will itself alter the
mechanisms that drive behavior, possibly in substantial ways. Such limitations should be borne in mind in
practical applications, and other empirical checks applied where feasible.

Section 7. De Novo Simulation of REMs
We have seen how the simulate command can be used to simulate draws from fitted rem.dyad objects, and
even how these may be modified by switching coefficients or covariates for particular purposes. What if we
want to create a de novo simulation? This can also be done, using rem.dyad to create a model skeleton that
can subsequently be used for simulation.

7.1 Creating a Model Skeleton

To set up a REM for simulation, we need to create an object that records the system size (i.e., number
of vertices), effects involved, and other critical information. When we fit models using ‘rem.dyad’ ’, this
information was encoded in the model object. In the de novo case, we use the same approach - except that
we simply omit the data!

To see how this is done, let’s consider an example. Let us say that we want to create a model for a 25-node
REM with a baseline intercept, an AB-BA P-shift, and a recency effect of sending on future sending (RSndSnd).
We then proceed by creating a model just as we would normally, but with NULL where the data should be:
ModInt <- rep(1, 25)
modskel <- rem.dyad(NULL, n = 25, effects = c("CovSnd", "PSAB-BA",

"RSndSnd"), covar = list(CovSnd = ModInt))

NULL edgelist passed to rem.dyad - creating model skeleton.
Checking/prepping covariates.

modskel

Relational Event Model
Model skeleton (not fit)

Embedded coefficients:
RSndSnd CovSnd.1 PSAB-BA

0.0006034927 -0.0009551033 -0.0002453042

Note that the model is correctly identified as a skeleton, with a reminder that it was not fit to data. It also
comes equipped with “default” coefficients, but these are not very useful: if a seed coefficient is not passed,
rem.dyad always initializes with perturbed coefficients near zero. If one knows what coefficients one wants to
embed in the skeleton, one can set them using the coef.seed argument.

Note that none of the inferential or other arguments to rem.dyad are needed here, since no fitting is done.
Perhaps less obviously, we do not need to set the ordinal variable, since all REM simulation is done in
continuous time. (The resulting trajectories can, of course, be interpreted ordinally, if the pacing constant
used was arbitrary.)

7.2 Simulating from the Model Skeleton

Simulation from the model skeleton is then performed just as simulation with fitted model objects, except
that one needs to pass the number of draws to take (nsim, which was optional before) and coef (unless one
already embedded the coefficients one wants in the model object). Be sure to enter your coefficients in the
order stored in the skeleton, which may not be the order you initially specified the effects! Let’s see how this
works, using our example:

42

set.seed(1331)
modsim <- simulate(modskel, nsim = 100, coef = c(0.25, -1, 4),

covar = list(CovSnd = ModInt))
head(modsim) #See the trajectory

[,1] [,2] [,3]
[1,] 0.003446229 20 2
[2,] 0.004616100 9 6
[3,] 0.005879407 25 17
[4,] 0.007751835 10 23
[5,] 0.009434835 9 20
[6,] 0.015124865 14 23

grecip(as.sociomatrix.eventlist(modsim, 25), measure = "edgewise") #Relatively reciprocal

Mut
0.2444444

Any number of events may be simulated in this way.

7.3 Simulation with Time-varying Covariates

Time-varying covariates must, by definition, be specified at each time step. rem.dyad understands several
covariate formats (see ?rem.dyad):

• Single covariate, time invariant: For CovSnd, CovRec, or CovInt, a vector or single-column matrix/array.
For CovEvent, an n by n matrix or array.

• Multiple covariates, time invariant: For CovSnd, CovRec, or CovInt, a two-dimensional n by p ma-
trix/array whose columns contain the respective covariates. For CovEvent, a p by n by n array, whose
first dimension indexes the covariate matrices.

• Single or multiple covariates, time varying: For CovSnd, CovRec, or CovInt, an m by n by p array whose
respective dimensions index time (i.e., event number), covariate, and actor. For CovEvent, a m by p by
n by n array, whose dimensions are analogous to the previous case.

Thus, in the time-varying case, the dimensions of the covariate object must be consistent with nsim. Let’s
see a simple example, involving a 10-person group with an initial activity covariate that decays with time.
We will simulate for 100 time steps, so need to create a 100 by 1 by 10 matrix to hold the covariate (the ith
slice containing the covariate values “going into’ ’ the ith event). When creating the skeleton, it is currently
necessary to pass covariates as if they are static, since there are not yet multiple time points; the checks that
are performed to ensure that the covariates are legal will object if too many time points are given. (This will
probably change in the future.) The time-varying version is then passed to the simulator.
set.seed(1331)
Set up the model
tcovar <- array(sweep(sapply(1:10, rep, 100), 1, 1/1.05ˆ(0:99),

"*"), dim = c(100, 10, 1))
SndInt <- rep(1, 10)
Note that, in making the skeleton, we need to pass the
covariates as if they are static - that's because the
model doesn't contain time points yet.
modskel2 <- rem.dyad(NULL, n = 10, effects = c("CovSnd", "CovInt"),

coef.seed = c(-1, 1), covar = list(CovSnd = SndInt, CovInt = tcovar[1,
, 1]))

NULL edgelist passed to rem.dyad - creating model skeleton.
Checking/prepping covariates.

43

Simulate draws
modsim2 <- simulate(modskel2, nsim = 100, covar = list(CovSnd = SndInt,

CovInt = tcovar))

Note that dynamics slow down, and participation evens out
plot(diff(modsim2[, 1]), col = hsv(modsim2[, 2]/10 * 0.6), pch = 19,

ylab = "Inter-event Time")
lines(supsmu(x = 2:100, y = diff(modsim2[, 1])))

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Index

In
te

r−
ev

en
t T

im
e

On average, dynamics slow down, as we would expect, and more low-numbered (redder) vertices interact
after the initial period.

References
Bender-deMoll, Skye, and Daniel A. McFarland. 2006. “The the Art and Science of Dynamic Network

Visualization.” Journal of Social Structure 7.
Butts, Carter T. 2008. “A Relational Event Framework for Social Action.” Sociological Methodology 38 (1):

155–200.
Butts, Carter T., Alessandro Lomi, Tom A. B. Snijders, and Christoph Stadtfeld. 2023. “Relational Event

Models in Network Science.” Network Science. https://doi.org/10.1017/nws.2023.9.
Butts, Carter T., Miruna Petrescu-Prahova, and B. Remy Cross. 2007. “Responder Communication Networks

in the World Trade Center Disaster: Implications for Modeling of Communication Within Emergency
Settings.” Journal of Mathematical Sociology 31 (2): 121–47.

DuBois, Christopher, Carter T. Butts, Daniel McFarland, and Padhraic Smyth. 2013. “Hierarchical Models
for Relational Event Sequences.” Journal of Mathematical Psychology 57 (6): 297–309.

Marcum, Christopher, and Carter T. Butts. 2015. “Constructing and Modifying Sequence Statistics for
Relevent Using informR in R.” Journal of Statistical Software 64 (1): 1–36. https://doi.org/10.18637/jss.

44

https://doi.org/10.1017/nws.2023.9
https://doi.org/10.18637/jss.v064.i05
https://doi.org/10.18637/jss.v064.i05

v064.i05.
Renshaw, Scott L., Selena M. Livas, Miruna G. Petrescu-Prahova, and Carter T. Butts. 2023. “Modeling

Complex Interactions in a Disrupted Environment: Relational Events in the WTC Response.” Network
Science. https://doi.org/10.1017/nws.2023.4.

45

https://doi.org/10.18637/jss.v064.i05
https://doi.org/10.18637/jss.v064.i05
https://doi.org/10.1017/nws.2023.4

	The statnet Project
	Section 0. Introduction to the Tutorial
	Section 1. A Quorum of Concepts Involving In Silico Experiments
	Section 2. A Quick REM Refresher
	Section 3. In Silico Knockout (and Up, and Down) Experiments with REMs
	Section 4. Knocking In Hypothetical Mechanisms
	Section 5. Probing Covariates, and Dose/Response Curves
	Section 6. Cutting In: Intervening in Trajectories
	Section 7. De Novo Simulation of REMs
	References

