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1 INTRODUCTION 
This supplementary technical appendix describes the mathematical model structure, 

parameterization, and statistical analysis of the accompanying paper in further detail. 

1.1  Model Framework 

The mathematical models for HIV transmission dynamics presented in this study are agent-based 

microsimulation models in which uniquely identifiable sexual partnership dyads were simulated and 

tracked over time. This partnership structure is represented through the use of separable temporal 

exponential-family random graph models (STERGMs), described in Section 3. On top of this 

dynamic network simulation, the larger epidemic model represents demography (entries, exits, and 

aging), interhost epidemiology (disease transmission), intrahost epidemiology (disease progression), 

and clinical epidemiology (disease diagnosis and treatment). Individual attributes related to these 

processes are stored and updated in discrete time over the course of each epidemic simulation. 

The modeling methods presented here depend upon and extend the EpiModel software to 

incorporate HIV-specific epidemiology. The HIV extensions for men who have sex with men (MSM) 

were originally developed by Goodreau et al. for use in prior modeling studies of MSM in the United 

States and South America,1–3 and subsequently in a research project investigating the causes and 

consequences of racial disparities in HIV incidence among young MSM in the US (results 

forthcoming). 

The model algorithms and methods presented here generalize these prior MSM HIV transmission 

models to investigate emerging biomedical HIV prevention technologies such as oral pre-exposure 
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prophylaxis (PrEP) as part of a collaborative modeling effort (the Coalition for Applied Modeling for 

Prevention) between Emory University, the University of Washington, the Centers for Disease 

Control and Prevention, and local health public departments [http://emorycamp.org/]. 

1.2 Model Software 

The models in this study were programmed in the R and C++ software languages using the 

EpiModel [http://epimodel.org/] software platform for epidemic modeling. EpiModel was 

developed by the authors for simulating complex network-based mathematical models of infectious 

diseases, with a primary focus on HIV and other sexually transmitted infections (STIs). EpiModel 

depends on Statnet [http://statnet.org/], a suite of software in R for the representation, 

visualization, and statistical analysis of complex network data.4 

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research 

questions. For this current research study, we have developed extension modules into an add-on 

software package to EpiModel called EpiModelHIV This open-source software is available for 

download, along with the scripts used in the execution of these models. The tools and scripts to run 

these models are contained in two Github software repositories: 

• [http://github.com/statnet/EpiModelHIV] contains the general extension software 

package. Installing this using the instructions listed at the repository homepage will also load in 

EpiModel and the other dependencies. 

• [http://github.com/statnet/PrEPGuidelines] contains the scripts to execute the 

mathematical models and to run the statistical analyses provided in the manuscript. 

Simulations were performed on the Hyak high-performance computing (HPC) system at the 

University of Washington. This 11,000-core HPC allowed execution of multiple simulations in parallel 

to reduce the overall computation time. Instructions for adapting the simulation scripts within the 

repositories above to run on smaller scale systems are provided within the repository help 

documentation. 

 

2 EMPIRICAL DATA  
The behavioral modules within the larger epidemic model were parameterized using two studies of 

HIV/STI disparities in black and white non-Hispanic MSM, conducted from 2010–2014 in Atlanta, 

Georgia. The Involvement Study was a prospective HIV incidence cohort of 803 MSM and the MAN 
Project was a cross-sectional chain-referral sexual network study of 314 MSM. Both samples were 

recruited contemporaneously using venue-time-space sampling, using a modified frame from the 

2008 cycle of the National HIV Behavioral Surveillance system. Study participants completed 

common self-administered computer-based questionnaire modules that assessed demographics, 

prevention behaviors, and a detailed dyadic (partnership) section that collected demographic, 

behavioral, and structural (partnership duration and sequence) data. 
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We first created a combined ego dataset of black and white non-Hispanic MSM in Atlanta, ages 18–

40 from the baseline visit of Involvement (n=803) and network seed-level respondents from the MAN 

Project (n=196), for a total of 999 egos. Then a combined dyadic dataset was created for 

partnerships among those egos, which included up to 5 most recent sex partners in the previous 6 

months per ego for Involvement or 10 partners in 12 months per ego for MAN Project. Only Black 

and White non-Hispanic male partners were included, and dyads were limited to those in which AI 

occurred at least once (at last sex or during the 6 or 12 month interval), resulting in a total of 2,626 

dyads. We refer to this as the combined dyadic dataset below.  

Due to the broad focus of this modeling paper, we did not explicitly model race/ethnicity in either the 

input parameters or as output statistics. Future models that explore racial disparities in HIV incidence 

attributable to scale-up of emerging prevention technologies like PrEP will use race-specific 

parameter definitions, so we still describe them in detail here in order to outline these broader 

modeling methods for current and future research activities. 

 

3 NETWORKS OF SEXUAL PARTNERSHIPS 

We modeled networks of three interacting types of sexual relations: main partnerships, casual (but 

persistent) partnerships, and one-time anal intercourse (AI) contacts. We first describe the methods 

conceptually, including the parameters used to guide the model and their derivation (Section 3.1), 

and then present the formal statistical modeling methods (Section 3.2). Consistent with our 

parameter derivations, all relationships are defined as those in which AI is expected to occur at least 

once. 

3.1  Conceptual Representation of Sexual Networks 

Our modeling methods aim to preserve certain features of the cross-sectional and dynamic network 

structure as reported in behavioral studies, while also allowing for mean relational durations to be 

targeted to those reported for different groups and relational types. These methods do so all within 

the context of changing population size (due to births, deaths, arrivals and departures from the 

population) and changing composition by attributes such as age and disease status. 

The network features that we aim to preserve are as follows, with the parameters for each described 

in turn: 

• The proportion of men in any given combination of main and casual partnerships (for 

example, in 1 main and 0 casual partnerships) at any time point. 

• The expected number of one-time contacts per time step had by men in each main-casual 

combination. 

• Variation across men in the numbers of one-time contacts. 

• Age mixing within each of the different relational types. 
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• Prohibitions against partnering for two men who are both exclusively insertive or exclusively 

receptive. 

3.1.1  Number of Ongoing Main and Casual Partnerships  

Ongoing partnerships (whether main or casual) were defined from the combined dyadic dataset as 

those in which sex had already occurred more than once, and in which the respondent anticipated 

having sex again. Within this set, partnerships were defined as main if the respondent indicated that 

it was someone they “felt committed to above all others” or that they considered the person their 

“primary sex partner”; if neither of these conditions held, the partner was defined as casual. This 

yielded the following proportions of men with a given number of main and casual relationships at a 

point in time (i.e. the expected momentary degree distribution): 

 0 Casual 1 Casual 2 Casual 

0 Main 47.1% 16.7% 7.4% 

1 Main 22.0% 4.7% 2.1% 

3.1.2  Expected Number of One-Time AI Contacts, by Main/Casual Degree 

Respondents in the combined dyadic dataset were asked whether they had had sex with each 

partner once or more than once; the former response led to the contact being defined as one-time. 

These contacts cannot be analyzed in terms of momentary degree distributions, since none are 

ongoing at the point of interview, by definition. Instead, we turn the observed frequencies into 

expected rates of one-time contacts per time step for men under different conditions. One of the 

sources of heterogeneity in men’s propensity for one-time AI contacts is their current relationship 

status. The expected numbers are given by: 

 0 Casual 1 Casual 2 Casual 

0 Main 0.065 0.087 0.086 

1 Main 0.056 0.055 0.055 

 
3.1.3 Heterogeneity in the One-Time Contact Rate  

In addition to differences by relational status, men also have underlying fixed heterogeneities in their 

propensity to engage in one-time AI. The distribution of one-time contacts was divided into quintiles, 

within which the expected values of one-time AI per time step are: 

 

Quintile Value 

Lowest quintile 0.000 

Second quintile 0.007 
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Third quintile 0.038 

Fourth quintile 0.071 

Highest quintile 0.221 

Men are assigned a quintile upon entry into the population, which remains fixed. Any individual 

man’s propensity for AI is determined as a combination of their quintile and their current main/casual 

partnership counts. Our statistical methods (described below) translate both propensities into 

conditional log-odds, allowing for their combination. Note that the means of the columns in the 

quintile table equal the means of the values in Section 3.1.2 weighted by the proportions in Section 

3.1.1. These reflect the overall expected value across all men for one-time AI acts per time step. 

3.1.4  Age Mixing 
Respondents also reported on the estimated age of each partner. We model age mixing within a 

given relational type using a single parameter for each, the expected mean difference in square root 

of the ages of men in a relationship, consistent with previous work.1,3,5 For instance, a relationship 

between a 23-year-old and a 28-year-old would represent 23 − 28  = 0.496. 

 Value 

Main partnerships 0.464 

Casual partnerships 0.586 

One-time contacts 0.544 

3.1.5  Mixing by Sexual Role 
We assign men a fixed sexual role preference (exclusively insertive, exclusively receptive, versatile). 

The model then includes an absolute prohibition, such that two exclusively insertive men cannot 

partner, nor can two exclusively receptive men. Men’s roles at last sex for each of the last 5 

(Involvement) or 10 (MAN Project) partners were aggregated; those who had engaged in one role 

across all of those acts were deemed to be exclusively receptive or insertive, and those who had 

engaged in at least one act of each were deemed to be versatile. 

 Probability 

Exclusively insertive 24.2% 

Versatile 43.7% 

Exclusively receptive 32.1% 
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3.1.6  Partnership Durations 

 We model relational dissolution as a memoryless process with a single parameter per relational 

type. This implies an exponential distribution for relational durations within each category. As 

detailed in previous work,1 for memoryless processes, the expected age of an extant relationship at 

any moment in time matches the expected uncensored duration of relationships, given the balancing 

effects of right-censoring and length bias for this distribution. To derive our values, we take the 

median of the observed distribution and then calculate the mean for the exponential distribution with 

that median. Duration was calculated as the difference between first and last sex date for each dyad 

the ego reported sex with more than once in the interval. The resulting expected relational durations 

were: 

 Duration 

Main partnerships 407 days 

Casual partnerships 166 days 

3.2  Statistical Representation of Sexual Networks 

Exponential-family random graph models (ERGMs) and their dynamic extension separable temporal 

ERGMs (STERGMs) provide a foundation for statistically principled simulation of local and global 

network structure given a set of target statistics from empirical data. Main and casual relationships 

were modeled using STERGMs,6 since they persist for multiple time steps. One-time contacts, on 

the other hand, were modeled using cross-sectional ERGMs.7 Formally, our statistical models for 

relational dynamics can be represented as five equations for the conditional log odds (logits) of 

relational formation and persistence at time t (for main and casual relationships) or for relational 

existence at time t (for one-time contacts): 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌,-,/ = 1 	𝑌,-,/34 = 0, 𝑌,-,/6  = 𝜃89
:𝜕 𝑔89 𝑦  Main partnership formation 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌,-,/ = 1 	𝑌,-,/34 = 0, 𝑌,-,/6  = 𝜃=9
:𝜕 𝑔=9 𝑦  Casual partnership formation 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌,-,/ = 1 	𝑌,-,/34 = 1, 𝑌,-,/6  = 𝜃83:𝜕 𝑔83 𝑦  Main partnership persistence 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌,-,/ = 1 	𝑌,-,/34 = 1, 𝑌,-,/6  = 𝜃=3:𝜕 𝑔=3 𝑦  Casual partnership persistence 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌,-,/ = 1 	𝑌,-,/6  = 𝜃>:𝜕 𝑔> 𝑦  One-time contact existence 

where:  

• 𝑌,-,/ = the relational status of persons i and j at time t (1 = in relationship/contact, 0 = not) 

• 𝑌,-,/6  = the network complement of i,j at time t, i.e. all relations in the network other than i,j 

• 𝑔 𝑦  = vector of network statistics in each model  

• 𝜃 = vector of parameters in the formation model 
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For 𝑔 𝑦  and 𝜃, the superscript distinguishes the formation model (+), persistence model (-) and 

existence models (neither). The subscript indicates the main (m), casual (c) and one-time (o) 

models. 

The recursive dependence among the relationships renders the model impossible to evaluate using 

standard techniques; we use Markov chain Monte Carlo (MCMC) methods in order to obtain the 

maximum likelihood estimates for the 𝜽 vectors given the 𝒈 𝒚  vectors. 

Specific model statistics are listed below. Together these sets allow us to retain all of the network 

features listed in Section 3.1. it is important to note that, although the statistics are expressed here in 

terms of number of relationships and enter into the estimation model in this form, the simulation 

model is then parametrized using the resulting 𝜃 coefficients. This means that, as population size 

and composition changes, it is not the absolute number of relationships of different kinds that will be 

preserved, but the relative numbers (e.g. the mean number of relationships per person). Similar 

conversions hold for the other statistics (e.g. the mean age difference per relationship is preserved, 

not the sum across all relationships). 

Main partner formation model statistics: gC9 y  vector: 

• 𝑔849 𝑦  = number of main partnerships 

• 𝑔8E9 𝑦  = number of men with 2+ main partners 

• 𝑔8F9 𝑦  = number of main partnerships for men with 1 casual partner 

• 𝑔8G9 𝑦  = number of main partnerships for men with 2 casual partners 

• 𝑔8H9 𝑦  = sum of the absolute difference in the square root of partners’ ages across main 

partnerships 

• 𝑔8I9 𝑦  = number of main partnerships between men who were both exclusively insertive 

• 𝑔8J9 𝑦  = number of main partnerships between men who were both exclusively receptive 

There are structural zeros as coefficient constraints for the terms 𝑔8E9 𝑦 , 𝑔8I9 𝑦 , 𝑔8J9 𝑦 . This 

means that the logit values for their coefficients are set to negative infinity to ensure that no 

partnerships of these types occur. 

Main partner persistence model terms: gC3 y  vector: 

• 𝑔843 𝑦  = number of main partnerships 

Casual partner formation model terms: gK9 y  vector: 

• 𝑔=49 𝑦  = number of casual partnerships 

• 𝑔=E9 𝑦  = number of casual partnerships for men with 1 main partner 

• 𝑔=F9 𝑦  = number of men with 2 casual partners 

• 𝑔=G9 𝑦  = number of men with 3+ casual partners 
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• 𝑔=H9 𝑦  = sum of the absolute difference in the square root of partners’ ages across casual 

partnerships 

• 𝑔8I9 𝑦  = number of casual partnerships between men who were both exclusively insertive 

• 𝑔8J9 𝑦  = number of casual partnerships between men who were both exclusively receptive 

There are structural zeros as coefficient constraints for the terms 𝑔8G9 𝑦 , 𝑔8I9 𝑦 , 𝑔8J9 𝑦 . This 

means that the logit values for their coefficients are set to negative infinity to ensure that no 

partnerships of these types occur. 

Casual partner persistence model terms:	gK3 y  vector: 

• 𝑔=43 𝑦  = number of casual partnerships 

One-time contact existence model terms:	gL y  vector: 

• 𝑔>4 𝑦  = number of one-time contacts 

• 𝑔>E 𝑦  = total # of one-time contacts for men with 0 main and 1 casual partnership 

• 𝑔>F 𝑦  = total # of one-time contacts for men with 0 main and 2 casual partnerships 

• 𝑔>G 𝑦  = total # of one-time contacts for men with 1 main and 0 casual partnerships 

• 𝑔>H 𝑦  = total # of one-time contacts for men with 1 main and 1 casual partnership 

• 𝑔>I 𝑦  = total # of one-time contacts for men with 1 main and 2 casual partnerships 

• 𝑔>J 𝑦  = total # of one-time contacts for men in risk quintile 1 

• 𝑔>M 𝑦  = total # of one-time contacts for men in risk quintile 2 

• 𝑔>N 𝑦  = total # of one-time contacts for men in risk quintile 4 

• 𝑔>4O 𝑦  = total # of one-time contacts for men in risk quintile 5 

• 𝑔>44 𝑦 = sum of the absolute difference in the square root of partners’ ages across one-time 

contacts 

• 𝑔84E9 𝑦  = number of one-time contacts between men who were both exclusively insertive 

• 𝑔84F9 𝑦  = number of one-time contacts between men who were both exclusively receptive 

There are structural zeros as coefficient constraints for the terms 𝑔84E9 𝑦 , 𝑔84F9 𝑦 . This means that 

the logit values for their coefficients are set to negative infinity to ensure that no partnerships of these 

types occur. 

Our method of converting the statistics laid out in Section 3.1 into our fully specified network models 

consists of the following steps: 

1. Construct a cross-sectional network of 10,000 men with no relationships. 

2. Assign men sexual roles based on frequencies listed in Section 3.1.6, as well as one-time 

risk quintiles (20% of the men per quintile). 
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3. Calculate the target statistics (i.e., the expected count of each statistic at any given moment 

in time) associated with the terms in the formation model (for the main and casual 

partnerships) and in the existence model (for one-time contacts). 

4. Assign each node a place-holder main and casual degree (number of on-going partnerships) 

that is consistent degree matrices, and store these numbers as a nodal attribute. (Note: this 

does not actually require individuals to be paired up into the partnerships represented by 

those degrees). 

5. For the main and casual networks, use the mean relational durations to calculate the 

parameters of the persistence model, using closed-form solutions, given that the models are 

dyadic-independent (each relationship’s persistence probability is independent of all others). 

6. For the main and casual networks, estimate the coefficients for the formation model that 

represent the maximum likelihood estimates for the expected cross-sectional network 

structure. 

7. For the one-off network, estimate the coefficients for the existence model that represent the 

maximum likelihood estimates for the expected cross-sectional network structure. 

Steps 5–7 occur within the Statnet software, and use the ERGM and STERGM methods therein. 

They are made most efficient by the use of an approximation in Step 6.8 During the subsequent 

model simulation, we use the method of Krivitsky et al.9 to adjust the coefficient for the first term in 

each model at each time step, in order to preserve the same expected mean degree (relationships 

per person) over time in the face of changing network size and nodal composition. At all stages of 

the project, simulated partnership networks were checked to ensure that they indeed retained the 

expected cross-sectional structure and relational durations throughout the simulations.  

 
4 BEHAVIOR WITHIN SEXUAL PARTNERSHIPS 
We model four phenomena consecutively within relationships at each time step: HIV+ status 

disclosure, number of anal sex acts, condom use per sex act, and sexual role per sex act.  

4.1  Disclosure 

We model the process by which someone who knows he is HIV-positive discloses this fact to 

partners of all types. Disclosure affects subsequent decision-making around condom use. 

We do not explicitly model other forms of serostatus discussion, since our source data do not include 

these all; our behavioral estimates in the absence of HIV+ disclosure marginalize over those cases 

in which men disclose as concordant negative and do not discuss at all. Disclosure may occur at the 

point of a relation commencing (if HIV+ status is already known) or it may occur at the point of 

diagnosis, in the case of on-going relationships. In the former case, disclosure of HIV+ status was 

determined from the combined dyadic dataset using the HIV status of the respondent and their 
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response to the question, “Did you and this partner share both of your HIV statuses before you first 

had sex?” In the latter case, we did not have data and assumed it to be universal. 

Probability of Disclosure of HIV+ Status Probability 

   to new main partner at outset of relationship 78.7% 

   to new casual partner at outset of relationship 67.8% 

   to one-time contact 56.8% 

   to ongoing partner if diagnosis occurs during relationship 100% 

4.2  Number of AI Acts 

The number of anal sex acts per week for each ongoing relationship is determined from a Poisson 

draw, with mean specific to the relational type. For one-time contacts, the number is set 

deterministically to 1 for the time step in which it occurs.  

AI Acts/Week/Partnership Frequency 

Main partnerships 1.54 

Casual partnerships 0.96 

These rates were calculated based on the two Atlanta studies, derived from questions asking the 

number of coital acts per partnership during the recall periods.10,11 These were then rescaled from 

the length of the recall period into the weekly rates listed in the table above. 

4.3  Condom use 

We conducted logistic regressions to identify the significant predictors of condom use within HIV-

discordant relationships (whether diagnosed or not) in our data. Respondents were asked if they had 

had unprotected anal sex with each partner during the recall periods.10,11 Predictors included the 

type of relationship, the HIV diagnosis status of the HIV+ partner (i.e. whether or not he himself knew 

that he was HIV+), and the disclosure status of the HIV+ partner (whether he had told his partner he 

was HIV+). Predictors that dropped out of the model included sexual position and perceived 

monogamy of the partnership. 

Base model coefficients for the nine race/partnership types were defined as logit(P(condom use|anal 

intercourse) =  

 Coefficient 

Main partnership -1.325 

Casual partnership -1.046 

One-time contact -1.008 
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Note that for these, the reference category is the case in which the HIV+ man is undiagnosed, hence 

the relatively low values of condom use. Modifiers for these logit coefficients are: 

Condition Coefficient 

HIV+ diagnosis 0.670 

HIV+ status disclosure 0.850 

Together, these values, in combination with the frequencies with which AI occurs in all of the 

different types of situations, implies an overall rate of condom use of approximately 50% across all 

acts. 

4.4  Sexual role 

Men are assigned an individual sexual role preference (exclusively insertive, exclusively receptive, or 

versatile) as described in Section 3.1.6. Relationships between two exclusively insertive or two 

exclusively receptive men are prohibited via the ERGM and STERGM models. Versatile men are 

further assigned an insertivity preference drawn from a uniform distribution between 0 and 1. When 

two versatile men are determined to have an AI act, their sexual positions must be determined (all 

other combinations have only one feasible combination). One option is for men to engage in intra-

event versatility (IEV; i.e. both engage in insertive and receptive AI during the act). The probability of 

this is 49%, and is derived from the partner-specific role data described in Section 3.1.6. If IEV does 

not occur, then each man’s probability of being the insertive partner equals his insertivity quotient 

divided by the sum of the two men’s insertivity quotients. 

 

5 DEMOGRAPHY 
In this model, there are three demographic processes: entries, exits, and aging. Entries and exits are 

conceptualized as flows to and from the sexually active population of interest: MSM aged 18 to 40 

years old. Entry into this population represents the time at which persons become at risk of infection 

via male-to-male sexual intercourse, and we model these flows as starting at an age after birth (age 

18) and ending at an age potentially before death (age 40). 

5.1 Entry at Sexual Onset 

All persons enter the network at age 18, which was the lower age boundary of our two main source 

studies. The number of new entries at each time step is based on a fixed rate (3 per 10,000 persons 

per weekly time step) that keeps the overall network size in a stable state over the time series of the 

simulations. The model parameter governing this rate was calibrated iteratively in order to generate 

simulations with a population size at equilibrium, given the inherent variability in population flows 

related to background mortality, sexual maturation (i.e., reaching the upper age limit of 40), and 
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disease-induced mortality. At each time step, the exact number of men entering the population was 

simulated by drawing from a Poisson distribution with the rate parameter. 

5.2  Initialization of Attributes 

Persons entering the population were assigned attributes, some of which remained fixed by definition 

(e.g., race), others fixed by assumption (e.g., insertive versus receptive sexual role), and yet others 

allowed to vary over time (e.g., age and disease status). Here we describe three attributes in the first 

category: 

• For race/ethnicity, this model was based on a population composition that was 50% black 

MSM and 50% white MSM. As noted, we did not explicitly model race within this study, and set 

all race-specific parameters to averages across stratified estimates. Subsequent models will 

extend this model framework to explore racial disparities related to PrEP uptake among MSM. 

This 1:1 ratio comes close to that for the Atlanta metropolitan area and also provides analytical 

clarity.  

• Circumcision status was randomly assigned to incoming men. Based on empirical data from 

Atlanta MSM,10 89.6% of men were circumcised before sexual onset. Circumcision was 

associated with a 60% reduction in the per-act probability of infection for HIV- males for 

insertive anal intercourse only (i.e., circumcision did not lower the transmission probability if 

the HIV+ partner was insertive).2,12 

• The CCR5-D32 genetic allele was modeled by assigning a mutation for zero, one, or two 

chromosomes. Compared to men without a CCR5 mutation, heterozygous men (those with 

one mutation) were 70% less likely to become infected and homozygous men (those with two 

mutations) were fully immune from infection.13,14 The population distribution of CCR5 was 

differential by race, with 0% of black men and 3.4% of white men expressing as homozygous, 

and 2.1% of black men and 17.6% of white men expressing as heterozygous.13 But because 

race was not explicitly represented in these models, we averaged each set of proportions: 

1.7% homozygous and 9.9% heterozygous overall. 

5.3 Exits from the Network 

All persons exited the network by age 40, either from mortality or reaching the upper age bound of 

the MSM target population of interest. This upper limit of 40 was modeled deterministically 

(probability = 1), but other exits due to mortality were modeled stochastically. Mortality included both 

natural (non-HIV) and disease-induced mortality causes before age 40. Background mortality rates 

were based on US all-cause mortality rates specific to age and race from the National Vital Statistics 

life tables.15 The following table shows the probability of mortality per year by age and race. 
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Age White Black 

18–24 0.00103 0.00159 

25–34 0.00133 0.00225 

35–39 0.00214 0.00348 

Natural mortality was applied to persons within the population at each time step stochastically by 

drawing from a binomial distribution for each eligible person with a probability parameter 

corresponding to that person’s risk of death tied to his age. Disease-related mortality, in contrast, 

was modeled based on clinical disease progression, as described in Section 6. 

5.4 Aging 

The aging process in the population was linear by time step for all active persons. The unit of time 

step in these simulations was one week, and therefore, persons were aged in weekly steps between 

the minimum and maximum ages allow (18 and 40 years old). Evolving age impacted background 

mortality, age-based mixing in forming new partnerships, and other behavioral features of the 

epidemic model described below. Persons who exited the network were no longer active and their 

attributes such as age were no longer updated. 

 

6 INTRAHOST EPIDEMIOLOGY 
Intrahost epidemiology includes features related to the natural disease progression within HIV+ 

persons in the absence of clinical intervention. The main component of progression that was 

explicitly modeled for this study was HIV viral load. In contrast to other modeling studies that model 

both CD4 and viral load, our study used viral load progression to control both interhost epidemiology 

(HIV transmission rates) and disease progression eventually leading to mortality. 

Following prior approaches,1,2 we modeled changes in HIV viral load to account for the heighted 

viremia during acute-stage infection, viral set point during the long chronic stage of infection, and 

subsequent rise of VL at clinical AIDS towards disease-related mortality. A starting viral load of 0 is 

assigned to all persons upon infection. From there, the natural viral load curve is fit with the following 

parameters. The HIV viral load has a crucial impact on the rates of HIV transmission within 

serodiscordant couples in the model, and this interaction is detailed in Section 8. The parameters 

governing these processes are provided in the table below. 
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Parameter Value Reference 

Time to peak viremia in acute stage 45 days Little16 

Level of peak viremia 6.886 log10 Little16 

Time from peak viremia to viral set point 45 days Little,16 Leynaert17 

Level of viral set point 4.5 log10 Little16 

Duration of chronic stage infection (no ART) 3550 days Buchbinder,18 Katz19 

Duration of AIDS stage 728 days Buchbinder18 

Peak viral load during AIDS (at death) 7 log10 Estimated from average duration of 
AIDS 

After infection, it takes 45 days to reach peak viremia, at a level of 6.886 log 10. From peak viremia, 

it takes another 45 days to reach viral set point, which is set at a level of 4.5 log 10. The total time of 

acute stage infection is therefore 3 months. The duration of chronic stage infection in the absence of 

clinical intervention is 3550 days, or 9.7 years. The total duration of pre-AIDS disease from infection 

is therefore approximately 10 years. At onset of AIDS, HIV viral load rises linearly from 4.5 log 10 to 

7 log 10, at which point mortality is assumed to occur. The time spent in the AIDS stage is 728 days, 

or 2 years. This viral load trajectory is for ART-naïve persons only, and the influence of ART on 

disease progression is detailed in Section 6. These transitions are deterministic for all ART-naïve 

persons. 

 

7 CLINICAL EPIDEMIOLOGY 
Clinical epidemiological processes refer to all steps along the HIV care continuum after initial 

infection: diagnosis, linkage to care, treatment initiation and adherence, and HIV viral load 

suppression. In this model, these clinical features have critical interactions with behavioral features 

detailed above, as well as impacts on the rates of HIV transmission, detailed below. The features of 

our model’s clinical processes generally follow the steps of the HIV care continuum, in which persons 

transition across states from infection to diagnosis to medical care linkage and ART initiation to HIV 

viral suppression.20 

7.1  HIV Diagnostic Testing 

Persons in our models were divided into non-testers (through age 40) and regular interval-based 

testers. Based on empirical data for Atlanta MSM,10 6.5% of MSM did not receive HIV testing before 

age 40. This was calculated based on a survey about never tested prior to the study, which may 

overestimate the final proportion who would have never tested before age 40. A fixed individual 

attribute for HIV treatment trajectories that characterized progression through the care continuum 
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was randomly assigned upon entry into the population, with this group of 6.5% of MSM not 

accessing HIV testing or other forms of post-diagnostic HIV medical services. 

The remaining 93.5% who entered the HIV care continuum HIV tested at regular intervals, with the 

estimated mean time between tests for HIV-negative persons at 301 days for black MSM and 315 

days for white MSM.10,21 This was calculated based on time since last test in the survey, with the 

assumption that testing was a memoryless process. In this paper, we averaged over the two 

intervals since we did not explicitly model racial differences in the care continuum. Diagnostic testing 

was simulated stochastically using draws from a binomial distribution with probability parameters 

equal to the reciprocal of this interval. This generated a population-level geometric distribution of 

times since last test. 

We also modeled a 21-day window period after infection during which the tests of the truly HIV+ 

persons would show as negative to account for the lack of antibody response immediately after 

infection.22 HIV+ persons who tested after this window period would be correctly diagnosed with 

100% test sensitivity. Individual-level attributes for diagnosis status and time since last HIV test were 

recorded for all MSM. 

7.2 Antiretroviral Therapy (ART) Initiation 

Consistent with previous models,1,2 we simulated the initiation of ART and subsequent clinical 

outcomes of full or partial HIV viral suppression based on men being in one of three clinical states: 

never tested, on treatment and partially virally suppressed, and on treatment with full viral 

suppression. There was insufficient empirical data to represent the patterns and rates at which 

individual men switch among these three states over the course of their infection, since the clinical 

ART landscape is constantly evolving. Therefore, we modeled men as being on one of the three 

fixed treatment trajectories as an individual-level attribute such that our model matched the 

population-level data on the prevalence of durable HIV viral suppression and treatment-naïve 

mortality.23,24  

Following HIV diagnosis (for the 93.5% of men who ever HIV test before age 40), MSM initiated 

treatment at a rate of 0.1095 per week. This translates into an average interval between testing and 

treatment initiation of 9.13 weeks, consistent with empirical data.21 In the absence of quantitative 

data, we assumed no gap between treatment entry and ART initiation. 

7.3 ART Adherence and Viral Suppression 

MSM who initiated ART could cycle on and off treatment, where cycling off treatment resulted in an 

increase in the VL back up to the assumed set point of 4.5 log10. The slope of changes to VL were 

calculated such that it took a total of 3 months to transition between the set point and the on-

treatment viral loads.25 Men on treatment could achieve partial or full suppression. Men who with 

partial suppression were assumed to have a log10 viral load of 3.5, compared to 1.5 among those 
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who were fully suppressed.25 The latter corresponds to an absolute viral load below the standard 

levels of detection (VL = 50).26 

The patterns of ART adherence leading to partial and full HIV viral suppression were estimated 

based on an analysis of HIV care patterns among MSM in the United States,23 which was required in 

order to obtain parameters that were specific to young MSM by race. Parameterizing our model used 

three types of inputs: (1) the proportion of those diagnosed who are on ART; (2) the proportion of 

those diagnosed who are virally suppressed; (3) the level of durable suppression (proportion on ART 

who have been suppressed for a year). Our source included recent estimates for (1) by race and by 

age, but not the interaction of the two. We used a weighted average of their 18–29 and 30–39-year-

old data, and assumed that the overall prevalence ratio by race that they observed for each outcome 

held within this age group as well. This suggested that 30% of young Black MSM who were 

diagnosed were in care, and 74% of those were on ART, for a combined value of 22% of young 

Black MSM who were diagnosed being on ART at any time point. Analogous figures for young White 

MSM where 47%, 84% and 39%. For (3), we used the same method of deriving estimates specific to 

young Black MSM (47% of those on ART are durably suppressed) and young White MSM (60% for 

the corresponding figure). For (2), we used figures by race from the same paper; however, similar 

figures by age were not included. Instead, we adjusted by using the relative rates of retention in care 

and suppression for young adults (25-44) compared to all respondents from an additional analysis of 

the care continuum for members of all risk groups (not just MSM-specific) in the US.27 This yielded 

estimates for the percent of young MSM on ART who are virally suppressed of 62% for Blacks and 

68% for Whites.  

None of these three sets of values entered the model directly as inputs. Parameter (3) was 

converted into a per-time step probability of falling out of suppression, by using the inverse geometric 

function to calculate the probability consistent with observed levels of durable suppression after 1 

year. Our other two input parameters were the proportion of those initiating ART who achieved full 

suppression, and the per-time step probability of re-achieving suppression after one had previously 

fallen out. We simulated our full model iteratively until we identified the unique values of these 

parameters by race that yielded the values estimated for parameters (1) and (2) above. The resulting 

set of model inputs were: 

Parameter Black White 

Proportion of those initiating ART who achieved 
full suppression 0.614 0.651 

Per-week probability of falling out of suppression 0.0102 0.0071 

Per-week probability of re-achieving suppression 0.00066 0.00291 
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This study averaged over the race-specific parameter estimates because race was not explicitly 

modeled in this study. 

7.4  Disease Progression and Mortality after ART Initiation 

Mortality after ART initiation was modeled based on the cumulative time on and off ART for persons 

who were fully or partially suppressed. The maximum time between infection and the start of AIDS 

was 9.7 years.18 If a person in either the full or partial suppression categories who spent this much 

time off ART during the course of infection progressed to AIDS. For the partially suppressed, we 

assumed a maximum time on ART of 15 years, similar to previous models, to account for treatment 

failure.1 For this group, the time to AIDS was an additive function of two ratios: (time on treatment / 

maximum time on treatment) + (time off treatment / maximum time off treatment). AIDS was 

simulated to occur when the sum of this score exceeded 1. Persons who had ever initiated ART 

progressed through AIDS at a similar rate as those who were ART-naïve. 

 

8 INTERHOST EPIDEMIOLOGY 
Interhost epidemiological processes represent the HIV-1 disease transmission within the model. 

Disease transmission occurs between sexual partners who are active on a given time step. This 

section will describe how the overall rate as a function of the intrahost epidemiological profile of each 

member of a partnership, and behavioral features within the dyad. 

8.1  Disease-Discordant Dyads 

At each time step in the simulation, a list of active dyads was selected based on the current 

composition of the network. This was called an “edgelist.” Given the three types of partnerships 

detailed above, the full edgelist was a concatenation of the type-specific sublists. The complete 

edgelist reflects the work of the STERGM- and ERGM-based network simulations, wherein 

partnerships formed on the basis of nodal attributes and degree distributions (see Section 2). Dyads 

active were considered active at a specific time step if the terminus of that simulated edge is less 

than or equal to the current time step (right-censored). From the full edgelist, a disease-discordant 

subset was created by removing those dyads in which both members were HIV- or both were HIV+. 

This left dyads that are discordant with respect to HIV status, which was the set of potential 

partnerships over which infection may be transmitted at that time step. 

8.2 Per-Act HIV Transmission Probability 

Within disease-discordant dyads, HIV transmission was modeled based on a sexual act-by-act basis, 

in which multiple acts of varying infectiousness could occur within one partnership within a weekly 

time step. Determination of the number of acts wthin each discordant dyad for the time step, as well 

as condom use and role for each of those acts, was described in Section 3. Transmission by act was 

then modeled as a stochastic process for each discordant sex act following a binomial distribution 
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with a probability parameter that is a multiplicative function of the following predictors of the HIV- and 

HIV+ partners within the dyad. 

Predictor Partner Parameters References 

Sexual role (insertive 
or receptive) HIV- 

Receptive: 0.008938 base probability 
when HIV+ partner has 4.5 log10 viral 
load 

Vittinghoff28 

Insertive: 0.003379 base probability 
when HIV+ partner has 4.5 log10 viral 
load 

Vittinghoff28 

HIV viral load (VL) HIV+ Multiplier of 2.45(VL - 4.5) Wilson29 

Acute stage HIV+ Multiplier of 6 Leynaert,17 Bellan30 

CCR5 status HIV- 
Δ32 homozygote: multiplier of 0 Marmor13 

heterozygote: multiplier of 0.3 Marmor13 

Condom use Both Multiplier of 0.25 Varghese,31 Weller32 

Circumcision status HIV-, insertive Multiplier of 0.40 Gray12 

PrEP status HIV- Detailed below – 

For each act, the overall transmission probability was determined first with a base probability that 

was a function of whether the HIV- partner was in the receptive or insertive role, with the former at a 

2.6-fold infection risk compared to the latter. The HIV+ partner’s viral load modifies this base 

probability in a non-linear formulation, upwards if the VL was above the VL set point during chronic 

stage infection in the absence of ART, and downwards if it was below the set point. Following others, 

we modeled an excess transmission risk in the acute stage of infection above that predicted by the 

heightened VL during that period. Four predictors of the HIV- partner could reduce the risk of 

infection: the Δ32 allele on the CCRR5 gene, condom use within the act, circumcision status (only if 

the HIV- partner was insertive in that act), and PrEP status (which we further detail in the following 

section). 

The final transmission rate per partnership per weekly time step was a function of the per-act 

probability of transmission in each act and the number of acts per time step. The per-act 

transmission probability could be heterogeneous within a partnership due to various types of acts in 

each interval: for example, a HIV- man who is versatile in role may have both insertive and receptive 

intercourse within a single partnership; some acts within a partnership may be protected by condom 

use while others are condomless. Transmission was simulated for each act within each 

serodiscordant dyad, based on draws from a binomial distribution with the probability parameter 

equal to the per-act transmission probabilities detailed above. 
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9  PRE-EXPOSURE PROPHYLAXIS (PrEP) 
PrEP was modeled as daily oral use of combination tenofovir disoproxil fumarate and emtricitabine 

(trade name: Truvda) among HIV- MSM.33 Active PrEP use reduces the per-act probability infection 

for HIV- men based on the level of adherence to PrEP after initiation. In this section, we further 

describe the methods for modeling PrEP uptake based on the indications for prescription from CDC’s 

guidelines for clinical practice, the role of PrEP uptake and monitoring, variable levels of adherence 

and its impact on HIV susceptibility, and the calculation of the epidemiological outcomes presented 

in the main paper. 

9.1 PrEP Indications 

The indications for PrEP initiation followed the eligibility guidelines for prescription within CDC’s 

recommendations for clinical practice.34 This paper explicitly models only the behavioral components 

of the PrEP indications for MSM:  

1. UAI in monogamous partnerships with a partner not recently tested negative for HIV;  

2. UAI outside of a monogamous partnership; and  

3. AI in a known serodiscordant partnership.  

We modeled PrEP indications based on these three conditions separately and then jointly to 

estimate their individual and combined prevention impact. Because of potential differences in clinical 

interpretation of these conditions, we explored two different functional definitions: a more “literal” 

reading of the specific wording in the guidelines, and a “clinical” version that may be more realistic to 

assess in practice.  

• For Condition 1, we define monogamy as both partners in a long-term partnership having no 

outside partnerships (literal) versus only the person assessed for PrEP exhibiting monogamy 

(clinical).  

• For Condition 2, the literal version considers any UAI outside of a monogamous partnership, 

whereas the clinical version indicates PrEP if there is any UAI outside of self-defined main 

partnerships in the risk window.  

• For Condition 3, the guideline definition is AI in a known serodiscordant partnership, but we 

also model a high-risk variant indicating PrEP only if UAI occurred in these partnerships. 

The CDC guidelines indicate PrEP based on the union of Conditions 1–3. We modeled three variants 

of this union based on the different condition definitions, comprising a plausible range of PrEP risk 

assessment schemes in clinical practice. 

In this paper, risk was measured within a pre-defined “window” period, over which risk behavior 

accumulates to define any indications. The base window period is 6 months, following the CDC 

guidelines, but sensitivity analyses varied that from 3 months to 12 months.  
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9.2 PrEP Uptake and Monitoring 

In our models, diagnostic testing is the gateway through which PrEP is offered. A small percentage 

of MSM (6.5%) never test before age 40, but the remainder test at regular intervals (approximately 

yearly before PrEP). MSM are assessed for PrEP indications only at visits in which their HIV test 

result is negative. At that time, MSM are considered for PrEP initiation only if the proportion of men 

on PrEP has not surpassed a threshold coverage fraction, which we vary from 10% to 90% from a 

default of 40%. Once men initiate PrEP they return to diagnostic testing visits at quarterly intervals. 

Newly infected men are discontinued on PrEP immediately. On a yearly basis (after 4 quarters of 

testing after PrEP initiation), their risk behavior is reassessed; if formerly indicated MSM had no 

behavioral indications in the window period before that reevaluation, their PrEP is discontinued. 

9.3 Adherence and Impact on HIV Transmission 

Men initiating PrEP were assigned a fixed adherence profile that reflected an average weekly 

dosage. Adherence parameters were drawn from an open-label demonstration project reweighted by 

race to account for the small proportion of non-white persons in that study.35 Our base model 

assigned 21.1% of men as non-adherent, 7.0% as taking <2 pills/week, 10.0% 2–3 pills/week, and 

61.9% at 4+ pills/week. In sensitivity analyses for adherence, we varied the proportion in the highly 

adherent group from 10% to 90% by proportionally reallocating men into the lower three adherence 

groups. Use of PrEP resulted in a reduction of the per-act probability of infection correlated with 

adherence level: 0%, 31%, 81%, and 95%, for the non-adherent to high-adherence groups, 

respectively, following Grant et al.33,36 

 

10 SIMULATION METHODS 
This section describes the methods for executing the simulations and conducting the data analysis 

on the outcomes in further detail. 

10.1 Model Calibration 

Instead of modeling the time series of HIV transmission among MSM since the inception of the 

epidemic in the 1980s, which would require historical empirical data related to behavioral and clinical 

parameters, we replicate the current HIV epidemic in this population using model parameters 

measured recently following existing approaches.1–3 Starting with a population of 10,000 MSM, HIV 

infection was initially seeded in 25% of the population. A set of burn-in simulations was then used to 

allow the natural dynamics of HIV transmission, demography, and other population features to 

evolve over time. The goal of the burn-in simulation was to arrive at a network of MSM that was 

independent of the initial conditions resulting from the seeding. This also established a population 

composition with behavioral and biological features calibrated to match the Atlanta-area HIV 

prevalence of 26%.10,37 
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We used approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) 

methods30,38 to calibrate behavioral parameters in which there was measurement uncertainty in order 

to match the simulated HIV prevalence at the end of the burn-in simulations to the HIV prevalence 

among Atlanta-area MSM. The details of ABC depend on the specific algorithm used, but in this 

case, ABC-SMC proceeded as follows: For each candidate parameter, 𝜃, to be estimated, we: 

1. Sampled a candidate 𝜃, from a prior distribution 𝜋(𝜃) 

2. Simulated the epidemic model with candidate value, 𝜃,.  

3. Tested if a distance statistic, 𝑑 (e.g., the difference between observed HIV prevalence and 

model simulated prevalence) was greater than a tolerance threshold, 𝜖. 

a. If 𝑑 > 	𝜖 then discard 

b. If 𝑑 < 	𝜖 then add the candidate 𝜃, to the posterior distribution of 𝜃.  

4. Sample the next sequential candidate, 𝜃,94, either independently from 𝜋(𝜃) (if 3a) or from 𝜃, 

plus a perturbation kernel with a weight based on the current posterior distribution (if 3b). 

In this use of ABC, the parameter to be calibrated was an overall multiplier for the rate of acts within 

sexual partnerships over time. We chose this parameter based on the assumption that the number of 

acts may be underreported due to sensitivity biases. We used a uniform prior distribution for this 

multiplier parameter, with a range from 0.5 to 1.5, where 1 was equal to the act rate observed in the 

data. The ABC algorithms in the network simulations were particularly computationally intensive so 

we chose only one parameter to fit in order to keep the sample space smaller in this initial research 

effort. Future modeling efforts will expand the number of candidate parameters to estimate to allow 

for a broader source of uncertainty. 

For summary statistics against which to measure the performance of the model simulations, we 

choose two for this research project: 1) the slope of the prevalence curve in the time series of the 

burn-in model for the last 10 years of calendar time; and 2) the prevalence value at the end of the 

time series. The target summary statistic for the slope statistic was 0, which reflected the goal of a 

disease prevalence in an equilibrium state with minimal temporal fluctuations. The target statistic for 

the latter prevalence statistic was 26% as noted.10,37 The threshold parameter for the distance 

statistics was selected iteratively based on the performance of the ABC algorithm to converge 

towards those two summary statistics. The ABC model calibration was completed using the abc 

package in R. 

For the ABC algorithms to calibrate to the observed HIV prevalence, a total of 480 simulations were 

required for 50 years of calendar time. The posterior distribution for the act rate multiplier parameter 

was 1.32 (95% CrI = 1.19, 1.44). Given this parameter set, we simulated a burn-in model 250 times 

to account for the stochastic variability over individual simulations. The individual simulation in which 

the HIV prevalence at the end of the simulation was closest to the HIV prevalence target statistic of 

26% was selected as the starting point for the intervention simulations. 
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10.2 Intervention Simulations 

The intervention scenarios are described fully within the main paper. For each scenario, we 

simulated the model scenario 250 times for 10 calendar years in each simulation. Data from each 

simulation were merged, and a complete 250-simulation data file was retained for each scenario. All 

burn-in and intervention simulations were conducted on the Hyak high-performance computing 

platform at the University of Washington. 
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