a P L e

Applied Network Models for Infectious Disease Dynamics
Motivating Examples

27 70"

Network Modeling for Epidemics
Day 5




Models of Infectious Disease Agents Studies (MIDAS

 NIH mechanism to understand EpiModel UL

Mathematical Modeling of Infectious Disease é .‘. Py
[ ] [ ] ) . . X . . . . . . .o. ¢ oo o
EpiModel is an R package that provides tools for simulating and analyzing mathematical models of infectious disease. ° o d
a n d re S O n d to I n fe Ct I O u S Supported epidemic model classes include deterministic compartmental models, stochastic individual contact models, and o o ® ® Bl
stochastic network models. Disease types include S, SIR, and SIS epidemics with and without demography, with utilities ® o ¢ . ¢
available for expansion to epidemics of arbitrary complexity. ® o000 *

diseases installation

The current software version is EpiModel v1.1.3, which may be downloaded from CRAN and can be installed in R through:

install.packages("EpiModel™)

> Sta rte d W i t h fo C u S O n O u t b re a I(S The development version of EpiModel hosted on GitHub and may be installed via the devtools package by:
a n d a C u te e p i d e m i CS devtools: :install_github("statnet/EpiModel™)

The software source code is available at the Github Repository. Users should submit bug reports and feature requests as
issues there. The Releases Page: on the repository lists all the changes to the software over time.

> Shifted towards addressing Getting Started

Software Manual

L] L]
e n d e l I I I C d I S e a S e S The EpiModel Software Manual provides a list of all the main functions within the package, with syntax and examples.

EpiModel Web

For beginning EpiModel users and those new to mathematical modeling generally, EpiModel includes two web-based
applications for simulating epidemics, using the Shiny framework in R. These applications are included within EpiModel for

°
deterministic compartmental models (DCMs) and stochastic individual contact models (ICMs). They are also hosted online
e Qur EpiModel 2.

Tutorials
L] L[]
> D ev e l O I n t h e n e Xt e n e r at I O n Of For each of the three model classes in EpiModel, the tutorials are organized into basic integrated models to guide new users
in the features of the model class, and advanced extension models to build out the models to answer new research
questions.

methods and software tools for Basic Integrated Models

Basic DCMs with EpiModel This tutorial provides some mathematical background for deterministic compartmental
models, with exploration of different model types and parameterizations within EpiModel.

network-based modeling of

Basic ICMs with EpiModel Stochastic individual contact models (ICMs) are the microsimulation analogs to DCMs. This
tutorial explains the general differences between deterministic and stochastic modeling, with hands-on basic examples.

infectious diseases

Basic Network Models with EpiModel Stochastic network models build in arbitrarily complex contact or partnership
relational structures that form and dissolve over time, using the framework of temporal exponential random graph models.
This tutorial shows how to simulate epidemics over simple networks with easily defined network structures.

L]
> Primary focus on HIV/STI models
! Advanced Extension Models
New DCMs with EpiModel Creating new deterministic compartmental models in EpiModel involves writing new model
u I I l e 0 S u S e u ro a y. s functions defining the mathematical transition processes, and then parameterizing and simulating those models. This tutorial
shows examples of how to write model functions, including new parameters, and run new models.
& Tutorial  </> Code




Research Applications of EpiModel Across Diseases

Model recommendations meet between the physiological and behavioral
management reality: implementation s of pathogen transmission: host heterogeneity

. . epidemic outcomes
and evaluation of a network-informed ¥

vaccination effort for endangered saoe D_Easocto snd Manaan E_Cosl .
B g mic Bayesian Markov model for health economic

Hawaiian monk seals ions of interventions against infectious diseases

Stacie J. Robinson', Michelle M. Barbieri', Samantha Murphy?, Katrin Haeussler, Ardo van den Hout, Gianluca Baio

Jason D. Baker, Albert L. Harting®, Meggan E. Craft* and Charles L. Littnan' September 5, 2018

A stochastic network-based model to sinf A Network Model of Hand Hygiene: How Good Is Good Enough to
(PD) in the Norwegian salmon industry Stop the Spread of MRSA?
movements and seaway distance betwe

Sara Amirpour Haredasht”, Saraya Tavornpanich”] Neal D. Goldstein, PhD, MBL"2 Stephen C. Eppes, MD;' Amy Mackley, MSN;' Deborah Tuttle, MD;' David A. Paul, MD"2

Trude Marie Lyngstad”, Tadaishi Yatabe®, Edgar B
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@ Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School Veterinary Medicin - OS
CA, USA
bNorwegian Veterinary Institute, Oslo, Norway ° ° ° °
—T— — ———Loaccantiy| [ink between animal behaviour
Incidence rate estimation, periodic testing and
sease ecology

the limitations of the mid-point imputation

approach
PP zenwa', Elizabeth A. Archie?, Meggan E. (raft, Dana M. Hawley?,

Alain Vandormael,'?* Adrian Dobra,? Till Barnighausen,-*>- . . .
Tulio de Oliveira®>’ and Frank Tanser'¢7-2 ° r[m6’ Janice Moore” and Lauren White*
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Research Applications of EpiModel Across Diseases
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Ghosh P, Basheer S, Paul S, Chakrabarti P, Sarkar J. Increased Detection coupled with Social Distancing and Health
Capacity Planning Reduce the Burden of COVID-19 Cases and Fatalities: A Proof of Concept Study using a Stochastic
Computational Simulation Model. medRxiv. 2020; DOI: 10.1101/2020.04.05.20054775. [LINK]

Yap WA, Raja DB. Time-variant strategies for optimizing the performance of non-pharmaceutical interventions (NPIs) in
protecting lives and livelihoods during the COVID-19 pandemic. medRxiv. 2020; DOI: 10.1101/2020.04.13.20063248.
[LINK]

Yu X. Modeling Return of the Epidemic: Impact of Population Structure, Asymptomatic Infection, Case Importation and
Personal Contacts. medRxiv. 2020; DOI: 10.1101/2020.04.26.20081109. [LINK]

Bhutta ZA, Harari O, Park JJ, et al. Evaluation of effects of public health interventions on COVID-19 transmission for
Pakistan: A mathematical simulation study. medRxiv. 2020; DOI: 10.1101/2020.04.30.20086447. [LINK]

Earnest R, Ronn MM, Bellerose M, et al. Population-Level Benefits of Extragenital Gonorrhea Screening among Men Who
Have Sex with Men: An Exploratory Modeling Analysis. Sexually Transmitted Diseases. 2020; Published Ahead of Print.
DOI: 10.1097/0LQ.0000000000001189. [LINK]

Nguemdjo UK, Meno F, Dongfack A, Ventelou B. Simulating the progression of the COVID-19 disease in Cameroon using
SIR models. medRxiv. 2020; DOI: 2020.05.18.20105551. [LINK]

Turk PJ, Chou S-H, Kowalkowski MA, et al. Modeling COVID-19 latent prevalence to assess a public health intervention
at a state and regional scale. medRxiv. 2020; DOI: 10.1101/2020.04.14.20063420. [LINK]

Al-Khani AM, Khalifa MA, AlMazrou A, Saquib N. The SARS-CoV-2 pandemic course in Saudi Arabia: A dynamic
epidemiological model. medRxiv. 2020; DOI: 10.1101/2020.06.01.20119800. [LINK]

Bhavani DSD, Rani DTS, Rapolu T, Nutakki B. A Time-Dependent SEIRD Model for Forecasting the COVID-19
Transmission Dynamics. medRxiv. 2020; DOI: 10.1101/2020.05.29.20113571. [LINK]

Churches T, Jorm L. "COVOID": A flexible, freely available stochastic individual contact model for exploring COVID-19
intervention and control strategies. JMIR Public Health Surveill. 2020; Published Ahead of Print. DOI:10.2196/18965.
[LINK]

Lopman B, Liu C, Guillou AL, Lash TL, Isakov A, Jenness S. A model of COVID-19 transmission and control on university
campuses. medRxiv. 2020; DOI: 10.1101/2020.06.23.20138677. [LINK]

https://github.com/statnet/EpiModel/wiki




COVID University DCM with EpiModel
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e Compartmental model for COVID on university campus led by Ben Lopman and
Carol Liu, supported by Adrien Le Guillou and me

e Projects impact of testing & quarantine and screening & isolation strategies

e Model programmed and simulated in EpiModel




COVID University DCM with EpiMode

i

COVID University

Introduction

@ Main Scenarios

Lt

Sensitivity Analyses

Raw Model Parameters

Run Sensitivity Analysis

Run New Simulations Number of Samples

Run 50 v

This section computes sensitivity analysis using probability sampling. Use the sliders below to choose the range
of the parameters, then press the Run button. Note: Running analyses with greater number of samples will
increase the total computing time.

Intervention Model
All Students

~—— Base Model: No Intervention

Populations

Staff and Faculty Members On Campus Students

7500

5000|

Value

2500

~| Off Campus Students
All Students
Staff and Faculty Members

_| Everyone

Compartments
—| Susceptible
Latent
Infectious
Symptomatic

Isolated

(3AnRINWND) snopRIauT

Recovered
Infectious (Cumulative)
Isolated (Cumulative)
Quarantined
Quarantined (Cumulative)

Hospitalized (Cumulative)

Days

Deaths (Cumulative)

Tests Performed (Cumulative)

Model Summary

Base Model: No Intervention Intervention Model

Students

Total at Last Time Step 14,993 (14,990 - 14,997) 14,999 (14,998 - 15,000)

Cummulative Cases 7,723 (6,109 - 9,363) 1,052 (452 -1,651)

Screening Interval in Days (0 = no Screening)

0 a 28 0 30] 180

f

https://epimodel.shinyapps.io/covid-university/




Network Model for MRSA

A Network Model of Hand Hygiene: How Good Is Good Enough to
Stop the Spread of MRSA?

Neal D. Goldstein, PhD, MBI; ! Stephen C. Eppes, MD;! Amy Mackley, MSN;! Deborah Tuttle, MD;' David A. Paul, MD'?

(a) (b) o—o (c)
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« Network model of MRSA infection within a NICU setting

« Networks defined as shared hospital worker contacts between infants




Network Model for Seal Infl

PROCEEDINGS B Model recommendations meet
management reality: implementation
and evaluation of a network-informed

) vaccination effort for endangered
Research e Hawaiian monk seals

Cite this article: Robinson SJ, Barbieri MM,

rspb.royalsocietypublishing.org

Murphy S, Baker JD, Harting AL, Craft ME, Stacie J. Robinson', Michelle M. Barbieri', Samantha Murphy?,

Littnan CL. 2018 Model recommendations Jason D. Baker', Albert L. Harting?, Meggan E. Craft* and Charles L. Littnan'
meet management reality: implementation

and evaluation of a network-informed INOAA National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard,

vacdnation effort for endangered Hawaiian §°"°|”|“' Hi, USA
University of Washington, Seattle, WA, USA

monk seals. Proc. R. Soc. B 285: 201718%. ®Harting Biological Consulting, Bozeman, MT, USA
http://dx.doi.org/10.1098/rspb.2017.1899 “College of Veterinary Medicne, University of Minnesota, St Paul, MN, USA

@ SIR, 0000-0002-0539-0306

Where disease threatens endangered wildlife populations, substantial resources
are required for management actions such as vaccination. While network
Accepted: 4 December 2017 models provide a promising tool for identifying key spreaders and prioritizing
efforts to maximize efficiency, population-scale vaccination remains rare,
providing few opportunities to evaluate performance of model-informed
strategies under realistic scenarios. Because the endangered Hawaiian monk
seal could be heavily impacted by disease threats such as morbillivirus,
we implemented a prophylactic vaccination programme. We used contact

Received: 22 August 2017

Subject Category:

Eeology networks to prioritize vaccinating animals with high contact rates. We used behaviour network
. dynamic network models to simulate morbillivirus outbreaks under real and
Subject Areas: idealized vaccination scenarios. We then evaluated the efficacy of model rec- intensively observed interactions used to
health and disease and epidemiology, ecology ommendations in this real-world vaccination project. We found that deviating C determine the types of contact best
from the model recommendations decreased the efficiency; requiring 44% captured by network metrics (degree)
Keywords: more vaccinations to achieve a given decrease in outbreak size. However, we —
Hawaiian monk seal, wildlife disease, gained protection more quickly by vaccinating available animals rather than seal sightings network
- e iti iori Is. This work demonstrates the value of
vaccnation, network model, morbillivirus waiting to encounter prionty sea istributi i
network models, but also makes trade-offs clear. If vaccines were limited but degr?c d'lstnbunon used to inform .
time was ample, vaccinating only priority animals would maximize herd vaccination strategy and to parameterize

protection. However, where time is the limiting factor, vaccinating additional dynamic network model

Author for correspondence: lower-priority animals could more quickly protect the population. dynamic network model T,
Stacie J. Robinson
e-mail: stacie.robinson@noaa.gov network model provides realistic efficiency achieved in real world
heterogeneous contact structure through vaccinations evaluated against ideal
. which outbreak may spread scenarios from model recommendations
1. Introduction
Infectious agents can negatively impact the demographics and fitness of wildlife C simulated outbreaks )
populations, and disease outbreaks have the potential to threaten the persistence ( SEIR model)
of small populations or endangered species [1,2]. Vaccination has become an

important tool for managing disease to protect threatened populations [3]. / / \ \
Network models can help to characterize heterogeneous contact patterns, and

are often suggested as useful means of optimizing disease control strategies
[4,5]. Network models have demonstrated the potential to maximize vaccination baseline ideal real wait
efficiency by targeting those individuals or locations most connected in the net-
work [6,7]. However, we do not know of instances where such model initial conditions initial conditions initial conditions based on model
Electronic supplementary material is available recommendations have been put into practice or evaluated under realistic field f{ i‘(‘)“ lsgi ‘(‘)4-R }SE ig4R output from i dleall
online at https:/dx.doi.org/10.6084/m9. conditions encountered during wildlife vaccination efforts. This study provides ]=_l l:_l ]=_l scenario fmd 'ummg of
real vaccinations
figshare.c.3957718. R=0 R=1.20 R=1.20
© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http:/aeativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
LEE‘H ll,}(? YAL SOCIETY author and source are credited. o o ® o




EpiModel’'s Modular Framework

Allows you to easily add in any processes of interest into the ID
system, and use the base EpiModel tools (estimation, simulation,

analysis, plotting)

These are tools that we are invested in helping you master!

It enforces you (the user) to think modularly: building a complex
system in small, interconnected building blocks

This facilitates efficient expansion once you have a starting

codebase




HIV Preexposure Prophylaxis (PrEP)

- Anti-retroviral treatment provided
to HIV-uninfected persons

Decreases biological risk of
infection when HIV-infected

partner has uncontrolled viral
replication

Men who have sex with men (MSM)
In the US are a high-priority
population for PrEP

- 5% to 50% of MSM with indications
with indications currently using it

10
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Why 1s PrEP a Network Problem?

US CDC PrEP Indications

US PHS/CDC released clinical practice
guidelines indicating PrEP for those at
“substantial risk” in 2014, revised In
2017

For MSM, prescription indications
were:

- Unprotected anal intercourse (UAI) in
monogamous partnership with person not
recently tested for HIV

- UAI outside of a monogamous partnership

- Al (including with condoms) in a known
serodiscordant partnership

- Any non-HIV STI diagnosis

Clinicians recommended to screen for
conditions in past 6 months,
reevaluate risk every 12 months

Many math models have
represented HIV PrEP

Compartmental models
typically represent simple
high/low risk groups

Loosely related to empirical data
on partnership change rates

& & Model frameworks that do
not realistically reflect underlying
contact processes that drive
transmission dynamics are
limited in modeling primary
prevention interventions & ¢



Our Models for HIV Preexposure Prophylaxis

Evaluating CDC Guidelines
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HIV Model Example

e Jenness SM, Johnson JA, Hoover KW, Smith DK, Delaney K. Modeling an
ntegrated HIV Prevention and Care Continuum to Achieve the Ending the
HIV Epidemic Goals. AIDS. 2020; 34(14): 2103-2113.

» PDF of paper: http://samueljenness.org/pdf/Jenness-2020-AIDS.pdf

> EpiModelHIV Code: https://github.com/statnet/EpiModelHIV

> Model scripts for paper: https://github.com/epimodel/combprev

13



http://samueljenness.org/pdf/Jenness-2020-AIDS.pdf
https://github.com/statnet/EpiModelHIV
https://github.com/epimodel/combprev

An Integrated Prevention & Care Continuum

Applying a PrEP Continuum of Care for Men

The State of Engagement in HIV Care in the
Collee 1 q . . .
El s_]Unéted \{Towards an integrated primary and secondary HIV prevention
to Conty . . .
A continuum for the United States: a cyclical process model
100 { michael J. Mugave{ Tim Horn®*, Jennifer Sherwood*?, Robert H Remien®, Denis Nash* and Judith D. Auerbach*”, for the Treatment
90 100% 10 Action Group and Foundation for Aids Research HIV Prevention Continuum Working Group
100% +
80
704 ™
PRIMARY HIV PREVENTION
60 D% (Reduction of acquisition risk) " "
50 70% 4 Initial HIV Testing
40 i SECONDARY HIV PREVENTION
A (Reduction of transmission risk)
30 50%- é\ssf:zsﬁgggg NEGATIVE POSITIVE >
20
40% 1 %
10 Virally
0 30% - A ' % °/? suppregsgd
Linked to % NEGATIVE % POSITIVE > o ) tI.mked Betalned (trar(;smt|§3|on
20%- prevention pf-zr\l,g]riirgn (primary iagnose o care in care reduction)
1o services sUccess) Pr?;/i?ur:t;?n HIV Care Continuum
HIV Infe Engaged, L .
-4 retained & 5 Retesting
adherent \




Ending the Epidemic Plan

Ending the HIV Epidemic: A Plan for America

HHS is proposing a once-in-a-generation opportunity to eliminate new HIV infections in our nation.

The multi-year program will infuse 48 counties, Washington, D.C., San Juan, Puerto Rico, as well

as 7 states that have a substantial rural HIV burden with the additional expertise, technology, and

resources needed to end the HIV epidemic in the United States. Our four strategies - diagnose,

treat, protect, and respond - will be implemented across the entire U.S. within 10 years.
_~—Ourgoatis= =

I 1 1 GOAL. em O strategic practices in the places focused on the ri eople 1o:
° End|ng the H|V Ep|demlc plan y p yt tegic practi the places focused on the right pe pl .t

introduced in Feb 2019 s -

in new H
infection

» 75% incidence reduction by 2025 in 5 years
and at leas
> 90% reduction by 2030 90% -

inlOyeaI'S. \ S nncnnnd ranidhita datmmt amd vammmad b et

> RESOU I’CGS directed at high'bu rden clusters and prevent new HIV infections.
cou nti es an d StateS a m HIV HealthForce will establish local teams committed

to the success of the Initiative in each jurisdiction.
e Will it be enough for HIV?

» Lowest levels of HIV viral suppression
in the Southern states where Medicaid ceographicatselection
not expanded through ACA g' Punsmisionoccurs more requenty Hore

e s than 50% of new HIV diagnoses* occurred in only 48
< ® e T counties, Washington, D.C., and San Juan, Puerto
e Rico. In addition, 7 states have a substantial rural
. . burden - with over 75 cases and 10% or more of
% o LN their diagnoses in rural areas.

Treat the infection rapidly and effectively to achieve sustained
viral suppression.

The Initiative will target our resources to the 48 highest burden
counties, Washington, D.C., San Juan, Puerto Rico, and 7 states
with a substantial rural HIV burden.

‘ | Ending

- . | }_Il}t‘e, www.HIV.gov

| Epidemic

*2016-2017 data
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Study Aims

« Using modeling to understand an integrated HIV prevention and

care continuum to achieve EHE goals

Primary Study Question

> What combinations of improvements to HIV screening (alone or as a
gateway to PrEP initiation), HIV care linkage, and HIV care retention could
meet the 2030 EHE goal of a 90% reduction in HIV incidence?

16




Methods Overview

e Stochastic network model for HIV transmission dynamics

e Target study population:

>~ Men who have sex with men (MSM) in Atlanta metropolitan area
~ Aged 15 to 65, stratified by Black, Hispanic, White/Other race/ethnicity

e Model calibrated to recent estimates of HIV care continuum steps and
PrEP utilization in population

e |ntervention scenarios for improvements to:

> HIV screening
- With and without PrEP initiation linked to HIV screening events

> HIV care linkage

» HIV retention in care

17




Network Modeling Methods

Temporal exponential random graph models
(TERGMs) define partnership formation and
dissolution

> Sexual network types: main, casual, one-off

>~ Men form partnerships according to model terms based
on numbers of each partner type, differential activity .
and mixing on race and age, sexual role segregation e e e e ’

HIV epidemiology

> Natural history (disease stages, continuous VL, HIV-related mortality)
~ ART initiation and adherence

> HIV transmission dynamics within serodiscordant partnerships

« Demographic processes

18




Multi-Layer Networks for Sexual Partnerships

e Three partnership networks: main, casual, one-time

Same node set, different edge set

e Distinguished in both their formation and dissolution model
components

» Formation formula for main network differs from other two
> Dissolution model varies (substantially) by average duration of partnerships
e Model code mechanics:

Estimation (netest): https://github.com/EpiModel/CombPrev/blob/
master/estimation/estimation.R

> Simulation (module for netsim): https://github.com/statnet/
EpiModelHIV/blob/CombPrev/R/mod.simnet.R

19



https://github.com/EpiModel/CombPrev/blob/master/estimation/estimation.R
https://github.com/EpiModel/CombPrev/blob/master/estimation/estimation.R
https://github.com/EpiModel/CombPrev/blob/master/estimation/estimation.R
https://github.com/statnet/EpiModelHIV/blob/CombPrev/R/mod.simnet.R
https://github.com/statnet/EpiModelHIV/blob/CombPrev/R/mod.simnet.R
https://github.com/statnet/EpiModelHIV/blob/CombPrev/R/mod.simnet.R

Empirical Data w» Network Model Parameters

Epidemics 30 (2020) 100386

Contents lists available at ScienceDirect

Epidemics

* Recently completed ARTnet Study of MSM in b )
the US (R21 MH112449)

» 4904 MSM reporting on 16198 sexual
partnerships

journal homepage: www.elsevier.com/locate/epidemics

Egocentric sexual networks of men who have sex with men in the United )Y

Check for

States: Results from the ARTnet study ]

Kevin M. Weiss®, Steven M. Goodreau”, Martina Morris‘, Pragati Prasad”, Ramya Ramaraju’,
Travis Sanchez®, Samuel M. Jenness™*
? Department of Epidemiology, Emory University, Atlanta, Georgia, United States

® Department of Anthropology, University of Washi Seattle, Washingl United States
“ Departments of Statistics and Sociol University of hi Seattle, United States

° Primary innovation: data-driven statistical
models embedded within ID transmission
models where primary data available

ARTICLE INFO ABSTRACT

Keywords: In this paper, we present an overview and descriptive results from one of the first egocentric network studies of

Men who have sex with men men who have sex with men (MSM) from across the United States: the ARTnet study. ARTnet was designed to

Sexual networks support prevention research for human immunodeficiency virus (HIV) and other sexually transmitted infections

Mathematical modeling (STIs) that are transmitted across partnership networks. ARTnet implemented a population-based egocentric

Network m?ddmg network study design that sampled egos from the target population and asked them to report on the number,

Network science N L . . R R L.
attributes, and timing of their sexual partnerships. Such data provide the foundation needed for parameterizing
stochastic network models that are used for disease projection and intervention planning. ARTnet collected data
online from 2017 to 2019, with a final sample of 4904 participants who reported on 16198 sexual partnerships.
The aims of this paper were to characterize the joint distribution of three network parameters needed for
modeling: degree distributions, assortative mixing, and partnership age, with heterogeneity by partnership type
(main, casual and one-time), demography, and geography. Participants had an average of 1.19 currently active
partnerships (“mean degree”), which was higher for casual partnerships (0.74) than main partnerships (0.45).
The mean rate of one-time partnership acquisition was 0.16 per week (8.5 partners per year). Main partnerships
lasted 272.5 weeks on average, while casual partnerships lasted 133.0 weeks. There was strong but heterogenous
assortative mixing by race/ethnicity for all groups. The mean absolute age difference for all partnership types
was 9.5 years, with main partners differing by 6.3 years compared to 10.8 years for casual partners. Our analysis
suggests that MSM may be at sustained risk for HIV/STI acquisition and transmission through high network
degree of sexual partnerships. The ARTnet network study provides a robust and reproducible foundation for
understanding the dynamics of HIV/STI epidemiology among U.S. MSM and supporting the implementation
science that seeks to address persistent challenges in HIV/STI prevention.

» TERGMs for network structure ww> simulate
» Poisson models for coital frequency ~w predict

» Logit models for condom use ~w predict

other MSM groups (Rosenberg et al., 2018). Syphilis has also con-
centrated among MSM (de Voux et al., 2015), following similar de-
mographic and geographic patterns as HIV (Grey et al., 2017; Sullivan

1. Introduction

e Allows for confounding adjustment and

Human immunodeficiency virus (HIV) and other sexually trans-

addressing parameter covariance, statistical
interactions when necessary

Secondary data for (more) universal
parameters

» PrEP/ART effectiveness, probability of HIV
transmission per act, ...

mitted infections (STIs) continue to present significant public health
challenges. In the United States, HIV and STI incidence disparities are
linked to demographics (Singh et al., 2014), risk behavior (Goldstein
et al., 2017), clinical care access (Beer et al., 2017), and geography
(Oster et al., 2015). Of the estimated 40,000 new HIV infections oc-
curring in 2017, two-thirds were among men who have sex with men
(MSM) (Centers for Disease Control and Prevention, 2019b). The large
disparities in HIV/STI cases by race and age have worsened, with in-
cidence increasing among younger non-white MSM while decreasing in

et al., 2018). Understanding the persistent and emerging drivers of
HIV/STI transmission dynamics among MSM is critical to prevention.
Sexual partnership networks are the mechanism through which all
STI and most HIV transmissions circulate. The pathogens are trans-
mitted by sexual acts embedded within partnerships, and circulation
through the population depends on how those partnerships form and
dissolve — a highly structured and population-specific dynamic process
(Morris et al., 2009; Goodreau et al., 2012; Jenness et al., 2016a). While
sexual network structure can be measured and analyzed either cross-

* Corresponding author at: Department of Epidemiology, Emory University, 1520 Clifton Road, Atlanta, GA 30322, United States.

E-mail address: samuel.m.jenness@emory.edu (S.M. Jenness).

https://doi.org/10.1016/j.epidem.2020.100386

Received 30 October 2019; Received in revised form 15 January 2020; Accepted 17 January 2020

Available online 24 January 2020

1755-4365/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Prevalence of diagnosed HIV Infection among MSM

» Rosenberg, Ann Epidemiol, 2018
» B/H/W targets: 33.3%, 12.7%, 8.4%

Proportion of HIV+ MSM who are diagnosed
» Singh, Ann Intern Med, 2018
» B/H/W targets: 80.4%, 79.9%, 88.0%

Proportion of diagnosed MSM linked to care within 1m

» GA DPH surveillance
» B/H/W targets: 62%, 65%, 76%

Proportion of diagnosed MSM with HIV VL suppression

» GA DPH surveillance
» B/H/W targets: 55%, 60%, 72%

Proportion of Indicated MSM Using PrEP
» Triangulation of ARTnet and other local estimates
» Estimates for MSM in the Atlanta area: 15%
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Model Calibration for Reference Scenario
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Bayesian Approaches to Model Calibration

e When the model form becomes complicated (e.g, collinearity), or there
are many parameters to estimate, Bayesian approaches are favorable

e General setup:
> Define prior distributions for uncertain input parameters
>~ Draw samples from those distributions
> Simulate the model with that parameter sample
-~ Compare outcome statistics (prevalence/incidence) to external target data points

» Some method for iteratively selecting which parameters to keep

e Approximate Bayesian Computation

» Tonietal: https://royalsocietypublishing.org/do1/10.1098/
rsif.2008.0172
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Infections Averted Under Different Prevention Scenarios
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How Long Will it Take to Achieve the EHE Goals?
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COVID Model Example

e Jenness SM, Willebrand KS, Malik AA, Lopman BA, Omer SB. Modeling
Dynamic Network Strategies for SARS-CoV-2 Control on a Cruise Ship.

» Pre-Print: https://doi.org/10.1101/2020.08.26.20182766
> EpiModelCOVID Code: https://github.com/epimodel/epimodelcovid
> Model scripts for paper: https://github.com/EpiModel/COVID-CruiseShip
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Multi-Layer Dynamic Contact Networks

e Three overlapping ERGMs to represent guest/guest,
crew/guest, and crew/crew contacts

e Multi-level structure: guests within cabins, cabins within
ship sectors, crew assigned to cabins within sectors

» X2 ERGMs, for pre-lockdown and post-lockdown network
structures

e ERGMs with ship structure allow for repeated contacts
with deterministic dissolution

e Scenarios focused on timing of lockdown, design of
sectorization, and degree and within-cabin and within-
sector mixing constraints given lockdown

» Control-based strategies: after outbreak has started

» Prevention-based strategies: informing future ship design
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Model Results 1: Calibration

A. Model Calibration B. Estimated Daily Incidence
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e Fit the model transmission parameters to daily screening rates and diagnoses on ship

» True incidence > diagnosed incidence

e Empirical lockdown occurred Day 15 of the cruise
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Model Results 2: Timing of Network Lockdown
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e Distribution of cumulative incidence across 1000 simulations in each scenario

e Earlier (counterfactual) lockdown associated with major reduction in cumulative
incidence compared to empirical (actual) lockdown on Day

» Little impact of PPE in these settings: high-intensity contact and directionality of transmission...
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Model Results 3: Directionality of Transmission

Table 2. Directionality of Transmission and Contact Intensity Reductions, with Day 15 Network Lockdown and PPE, on COVID Incidence at 1

Month
Total Passenger to PassengePassenger to Crew Crew to Passenger Crew to Crew
Scenario Cuml. Incid. Cuml. Incid. Cuml. Incid. Cuml. Incid. Cuml. Incid.
Median (95% Sl) Median (95% Sl) Median (95% Sl) Median (95% Sl) Median (95% Sl)

Base Scenario

No Intensity Reduction

50% Reduction
90% Reduction
100% Reduction

50% Reduction
90% Reduction
100% Reduction

50% Reduction
90% Reduction
100% Reduction

933.5 (366.0, 1556.2)

Varying Passenger-Passenger Contact Intensity

862.5 (353.9, 1454.0)
765.5 (316.9, 1348.0)
749.0 (297.9, 1255.1)

Varying Passenger-Crew Contact Intensity

849.0 (352.9, 1379.1)
787.0 (332.9, 1346.1)
744.0 (325.0, 1274.1)

Varying Crew-Crew Contact Intensity

897.0 (379.9, 1471.2)
899.0 (404.0, 1529.2)
895.5 (362.9, 1459.1)

With Contact Intensity Reductions, Network Lockdown, and PPE at Day 15

551.0 (213.9, 941.0)

488.0 (203.9, 843.0)
401.0 (164.9, 727.0)
381.0 (155.9, 677.0)

545.0 (230.0, 868.0)
535.5 (227.0, 899.0)
519.5 (225.9, 865.0)

542.0 (220.8, 904.0)
558.0 (255.0, 943.2)
558.0 (218.0, 909.1)

163.0 (66.0, 265.0)

155.0 (67.0, 257.0)
145.5 (63.0, 248.0)
147.5 (61.0, 241.0)

125.5 (54.0, 203.0)
96.0 (41.0, 173.0)
86.0 (37.0, 152.0)

161.0 (70.0, 254.0)
165.0 (78.0, 274.0)
162.0 (68.0, 263.0)

124.0 (46.0, 211.0)

124.5 (47.0, 216.0)
122.0 (44.0, 214.0)
126.0 (44.0, 208.0)

87.0 (31.0, 158.1)
62.0 (17.0, 130.0)
55.0 (17.0, 117.0)

120.0 (48.0, 203.1)
118.0 (47.0, 206.0)
115.0 (44.0, 200.0)

93.0 (33.0, 175.0)

93.5 (29.0, 174.0)
90.0 (31.0, 173.0)
93.0 (32.0, 168.0)

90.0 (31.0, 168.0)
87.0 (30.0, 170.0)
84.0 (29.0, 167.0)

74.0 (23.0, 142.0)
61.0 (17.0, 132.0)
55.0 (15.0, 119.0)

e In base model, most transmissions were passenger to passenger

» No/limited PPE was used within cabins

e Reducing the contact intensity could avert hundreds of infections
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Model Results 4: Prevention with Mass Screening

Table 4. Impact of Timing of Mass Asymptomatic Screening and Diagnosis-Based Case Isolation, with No Network Lockdown and Stratified by PPE Use, on COVID
Incidence and Mortality at 1 Month

Scenario

Cumulative Incidence

Cumulative Mortality

Total
Median (95% Sl)

NIA
Median (95% Sl)

PIA®
Median (95% SlI)

Total
Median (95% Sl)

NDA*
Median (95% Sl)

PDA’
Median (95% Sl)

Day 1
Day 5
Day 10
Day 15
Day 20
Day 25

Never (Reference)

Day 1
Day 5
Day 10
Day 15
Day 20
Day 25

Never (Reference)

Varying Timing of Mass Screening (Never PPE)

2286.0 (0.0, 3421.0)
2621.5 (16.0, 3353.1)
2917.0 (1787.8, 3310.1)
2944.5 (2256.8, 3176.1)
3102.5 (2588.8, 3360.1)
3607.0 (3360.9, 3668.0)
3692.0 (3679.0, 3699.0)

Varying Timing of Mass Screening (Always PPE)

1629.5 (0.0, 3013.0)
1856.5 (12.0, 2837.4)
2240.5 (1058.0, 2815.1)
2372.0 (1585.6, 2755.0)
2656.0 (1980.9, 3033.0)
3354.0 (2831.8, 3537.1)
3643.0 (3563.0, 3669.0)

1403.5 (1396.0, 1409.0)
1070.5 (1067.0, 1074.0)
775.0 (772.5, 777.5)
746.0 (744.0, 748.0)
590.0 (588.0, 591.5)
85.0 (84.0, 86.0)

0.0 (0.0, 0.0)

2012.0 (1998.0, 2023.0)
1776.0 (1766.0, 1784.5)
1395.0 (1387.0, 1402.0)
1267.5 (1262.0, 1273.0)
983.5 (977.5, 988.5)
285.5 (282.0, 290.0)
0.0 (-1.0, 1.0)

38.0 (37.9, 38.1)
29.0 (28.9, 29.1)
21.0 (20.9, 21.1)
20.2 (20.2, 20.3)
16.0 (15.9, 16.0)
2.3 (2.3, 2.3)

0.0 (0.0, 0.0)

55.3 (55.0, 55.4)
48.8 (48.6, 49.0)
38.3 (38.2, 38.5)
34.8 (34.7, 34.9)
27.0 (26.9, 27.2)
7.8(7.8,7.9)

0.0 (-0.0, 0.0)

7.0 (0.0, 24.0)
9.0 (0.0, 23.0)
13.0 (4.0, 25.0)
18.0 (8.0, 32.0)
30.0 (16.0, 45.0)
36.0 (24.0, 50.0)
36.0 (25.0, 49.0)

5.0 (0.0, 20.0)
6.0 (0.0, 19.0)
10.0 (2.0, 20.0)
15.0 (5.0, 27.0)
26.0 (12.0, 40.0)
33.0 (20.0, 47.0)
33.0 (20.0, 45.0)

29.0 (28.0, 29.0)
27.0 (27.0, 27.0)
23.0 (22.0, 23.0)
18.0 (17.0, 18.0)
6.0 (6.0, 7.0)
0.0 (-1.0, 0.0)
0.0 (0.0, 0.0)

27.0 (27.0, 28.0)
26.0 (26.0, 27.0)
23.0 (23.0, 23.0)
18.0 (17.0, 18.0)
7.0 (7.0, 8.0)
0.0 (0.0, 1.0)
0.0 (0.0, 0.0)

81.2 (80.6, 81.8)
75.6 (75.0, 76.0)
63.6 (62.9, 64.1)
50.0 (48.6, 50.0)
17.1 (16.1, 18.4)
0.0 (-2.5, 0.0)

0.0 (0.0, 0.0)

85.2 (84.5, 85.7)
81.0 (80.5, 81.5)
70.6 (70.0, 71.1)
54.3 (53.5, 55.0)
22.2 (20.9, 23.3)
0.0 (0.0, 2.5)

0.0 (0.0, 0.0)

e In absence of behavioral change, screening and diagnosis-based case isolation could

avert a substantial number of infections but not 100%

» Here, PPE has an impact!

» Why does Day 1 screening not prevent an outbreak?
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Model Results 5: Sensitivity Analysis for Screening Interventions
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e Base model assumed 100% reduction in contacts after case isolation, 80% PCR
test sensitivity, and a Day 1 screening strategy

e Only when PCR sensitivity reaches 100% Is an outbreak averted in the absence
of behavioral change
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