
Improving model specifications (esp. for triads)

Estimating from egocentrically sampled data

ERGMs:  Next steps1
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So what happened?
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◼ Everything was going so well, and then:

◼ To understand why, we need to take a step back



Why did the estimation fail?
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◼ MCMC has been key to statistical estimation of complex (i.e., 
realistic and interesting) models for dependent data

▪ And to the emergence of the field of “data science”

◼ In most cases, it works really well

▪ And there is lots of mathematical theory proving it has good 
convergence properties (see the appendix to the previous session)

◼ … but, it can run into trouble

▪ especially if the model you’re trying to fit is not a good one for the 
observed network



Dependency cascades
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◼ Models with dyad dependent terms can behave differently 
than we expect

▪ They look simple, almost like logistic regression

▪ But they represent effects that cascade through a network via a chain 
of dependence (this is the “watch out” from earlier)

◼ Homogeneous triangle and k-star terms turn out to be some 
of the worst offenders for creating cascades

◼ Leads to something called “model degeneracy”



Model Degeneracy
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◼ Technical Definition:

When a model places almost all probability on a small 
number of uninteresting graphs

◼ Most common “uninteresting”  graphs:
▪ Complete (all links exist)

▪ Empty

◼ Model degeneracy is a sign of misspecification
The model you specified would almost never produce the network you 
observed



Model Degeneracy
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◼ What does this error message mean?

◼ When trying to fit this model, the algorithm heads off 
into networks that are much more dense than the 
observed network.

◼ Let’s see why that is



Let’s take a simple example
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◼ This network seems to 
have lots of triangles

▪ 50 nodes

▪ 4% density

▪ 40% clustering

◼ Fraction of all 2stars with the 
triangle completed

◼ So it would be natural to fit

▪ edges + triangle model



Our network statistics
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◼ We can represent our 
model statistics as a 2D 
plot

And our observed graph in 
this plane

◼ Statistical theory 
guarantees that at the 
MLEs for 𝜃:

E(netstats) = Observed



At the MLE, this is what the model produces
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◼ The theory is not wrong

◼ Indeed, the means of the 
netstats are correct

◼ But this model produces 
a bimodal distribution to 
get those means

◼ It would never produce 
the observed graph



The problem is the model
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◼ The theory is fine, and the algorithm is fine

◼ The problem is the model

The simple edges + triangle model would not produce our 
observed graph

◼ This is what model misspecification looks like with 
dependent data



Solution:  replace the triangle term
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◼ Old statistic:    t x = σ𝑦𝑖𝑗𝑦𝑗𝑘𝑦𝑖𝑘

▪ t x =  # of triangles in the graph
◼ Here t x = 3 if the red edge is toggled on

▪ With this term every additional 3-cycle has the same impact, q
◼ So the odds of the red edge above are 3 times higher than an edge that 

creates only 1 triangle.

◼ And an edge that creates 10 triangles has 10x higher odds

▪ This is what creates the cascade (and doesn’t seem reasonable)



Solution:  a better term for triads
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◼ New statistic: 

▪ 𝑔𝑤𝑒𝑠𝑝 = a weighted sum of the triangles created by each edge

▪ Where the weights decline for each additional triangle created

◼ For each additional “shared partner” of an edge (like the red edge here)

◼ This sets declining marginal returns, with a smooth decay function

▪ The decay function we use involves a geometric weighting 

◼ Hence the name: geometrically weighted edge-wise shared partners

◼ a.k.a. GWESP

𝑔𝑤𝑒𝑠𝑝 = 𝑒α 

𝑖=1

𝑛−2

1 − 1 − 𝑒−α 𝑖 𝑠𝑝𝑖

Details in the Appendix



Add a gwesp term to the faux.mesa.high model

And conduct model assessments

… to StatnetWeb13
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We will compare four models

Model Network Statistics g(y)

Edges # of edges

Edges + GWESP

(transitivity)

# of edges 

weighted shared partners

Edges + Attributes

(homophily)

# of edges

# of edges for each race, sex, grade

# of edges that are within-race, within-grade, within-sex

Edges + Attributes + GWESP

(both)

# of edges

# of edges for each race, sex, grade

# of edges that are within-race, within-grade, within-sex

weighted shared partners
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These fits can take a while
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◼ So we won’t do this interactively now

▪ We’ll just show the results

◼ But you can implement these on your own when you 
have some time



Sequence of fitting and saving models
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1. edges

Fit model, save model

2. + gwesp(0.25, fixed = T)

Fit model, save model, reset formula

3. + edges + nodefactor("Grade") + nodefactor("Race") + nodefactor("Sex") + 
nodematch("Grade", diff = T) + nodematch("Race", diff = F) + nodematch("Sex", diff 
= F) 

Fit model, save model

4. + gwesp(0.25, fixed = TRUE)

Fit model, save model



Model Comparison
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◼ Note how the gwesp
estimate changes from 
model 2 to 4

▪ About 25% smaller

▪ That’s the impact of 
controlling for 
attribute effects, 
including homophily

◼ Homophily
estimates change 
also, once you 
control for 
transitivity



GOF comparison for all 4 models:

1. Edges

AIC:  2288

3. Edges + Attributes

AIC:  1809

2. Edges + GWESP

AIC:  1999

4. Edges + Attributes + 

GWESP

AIC:  1648
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This will take some time to run



Summary
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◼ Both transitivity and homophily play a role in clustering these 
friendships
• Homophily reproduces the geodesic distribution

• Transitivity (Triadic closure) 

• Reproduces the large number of isolates (degree)

• Captures the local clustering (ESP) reasonably well, but not the global clustering (geodesics)

• Both have strong independent effects, but also some correlation

• ~25% of the transitivity effect is a by-product of homophily (and vice versa)

◼ The GOF suggests the ESP distribution is still not well fit
• You could tinker some more, if this was a real research question

• But we’ll move on…



Simulating networks from the model
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◼ A fitted model describes a probability distribution across all networks of 
this size

▪ The model assigns a probability to every possible network

▪ The model terms and the estimated coefficients make some networks more 
likely than others

◼ You can simulate networks from this distribution

▪ Using the same MCMC algorithm that was used for estimation

◼ And the simulated networks will be centered on the network statistics in 
the original observed network

▪ This is why these models are really useful for network epidemiology



Simulations
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◼ On your own time:

◼ Choose one of the models that you have saved and run 100 
simulations with the default control settings

▪ Choose the model on the Simulations page next to “ergm formula”

▪ Do you see autocorrelation in the simulation statistics?

◼ Increase the MCMC interval to 10,000 and re-run the 
simulations to see how this changes the autocorrelation



Leveraging the principle of sufficiency

to estimate ERGMs from egocentric samples

Network Data (redux)22
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What is “sufficiency” ?
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◼ A principle in statistical theory

◼ That defines what you need to observe in data

◼ In order to estimate the parameters in your model

▪ The data “sufficient” for estimation



Example:  from simple linear regression
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◼ The OLS regression coefficient is related to the data as:

መ𝛽 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝑉𝑎𝑟(𝑋)

◼ I only need to observe these two summary statistics
▪ 𝐶𝑜𝑣(𝑋, 𝑌) and 𝑉𝑎𝑟(𝑋)

◼ In order to estimate 𝛽

◼ They are “sufficient”
▪ I don’t need to have the original data from the individual observations

▪ Just these two aggregate summary values



This is very helpful for network models
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◼ Because it reduces the burden of data collection



Network data: Three main types (review)

◼ Network census
▪ Data on every node and every link

◼ Adaptively sampled networks
▪ Link tracing designs (e.g., snowball or RDS)

◼ Egocentrically sampled networks
▪ Enroll population sample (“egos”)

▪ Ask them the usual questions about themselves

▪ Ask them non-identifying information about their partners (“alters”)
◼ Timing (start and end of partnership)

◼ Alter characteristics (sex, age, race, etc.)

◼ Relational characteristics (type, cohabitation, etc.)

◼ Pair-specific behaviors (act frequency, condom use, etc.)

▪ Optional: ask about alter-alter ties

▪ Optional: ask about perceptions of alters’ alters more generally
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Often infeasible in practice

Challenging to collect, and  the 
statistical methods for analysis 
are very limited

Feasible, statistically supported 
and general 



What can we observe in egocentric data
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◼ Aggregate network statistics for:

▪ Degree

◼ Mean degree, which sets density

◼ Degree distributions

▪ Nodal attribute heterogeneity

◼ Heterogeneity in degree

◼ Mixing by nodal attributes

▪ Triads

◼ Only if the alter-alter matrix data are collected

▪ Timing

◼ Start/End, Duration of active and completed partnerships

◼ We can use what we observe to estimate the ERGM coefficients

Much of the global structure of 
a network is set by these local 

properties



Egocentric data in ERGMs

◼ These can be handled in the software quite easily.

◼ Recall with faux.mesa.high above, we fit the ergm by providing:
▪ A model formula

▪ A complete network containing:
◼ nodes with their attributes

◼ the relations among those nodes

◼ But alternatively, one can pass:
▪ A model formula

▪ An set of nodes with their attributes

▪ The sufficient statistics for the terms in the model formula 
◼ Calculated from the observed data, and scaled if desired

◼ These are called “target stats” in ergm
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Network statistics in ERGMs
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Option 1: network census Option 2: pass nodeset and targets

net~edges+triangle net~edges+triangle

(ergm automatically target.stats = c(40, 7)

calculates suff. stats

from the network data)



We’ll be using this extensively this week
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◼ EpiModel is designed to work with both

▪ Complete network data (census)

▪ Egocentric data with target stat specifications

◼ You’ll get lots of practice during the labs with target stats

◼ And we will be reviewing published examples

▪ Based on egocentric data

▪ That address key issues in HIV prevention and care



Egocentric data for temporal ERGMs
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◼ The same principles apply to estimating temporal ERGMs

▪ TERGMS -- For dynamic networks

▪ Specify the dynamics of link formation and dissolution

◼ This requires collecting data on the duration of ties

▪ You’ll learn more about this in the next session (on STERGMs)

▪ And this is the foundation for dynamic, stochastic network-based epidemic simulations

◼ This is what makes the EpiModel framework so powerful

▪ Simple data collection requirements (egocentric samples)

▪ Robust statistical methodology for estimation and inference (ergms/tergms)

▪ Simulations rooted in empirical network data (that reproduce observed stats)



And after lunch

Temporal ERGMs
Representing network structure

And partnership dynamics over time

Lunch!32

NME Workshop



Selected References

NME Workshop 33

Handcock MS. (2003) Assessing Degeneracy in Statistical Models of Social Networks. 
CSSS working paper 39. https://www.csss.washington.edu/research/working-
papers/39

Hunter DR. Curved Exponential Family Models for Social Networks. (2007) Social 
networks. 29(2):216-30. doi: 10.1016/j.socnet.2006.08.005. PubMed PMID: 
PMC2031865.

Hunter DR, Handcock MS. Inference in Curved Exponential Family Models for 
Networks. (2006) Journal of Computational and Graphical Statistics. 15(3):565-83. 
doi: 10.1198/106186006X133069.

Krivitsky, P. N. and M. Morris (2017). "Inference for social network models from 
egocentrically sampled data, with application to understanding persistent racial 
disparities in HIV prevalence in the US." Annals of Applied Statistics 11(1): 427-455.

https://www.csss.washington.edu/research/working-papers/39


1. The calculation formula for GWESP, and some 
intuition

2. Technical details of egocentric estimation

Appendices34
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1. GWESP calculation
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spi = # of edges with i shared partners𝑔𝑤𝑒𝑠𝑝 = 𝑒α 

𝑖=1

𝑛−2

1 − 1 − 𝑒−α 𝑖 𝑠𝑝𝑖

This configuration contains:
• 1 edge with 3 shared partners 
• 6 edges with 1 shared partner

α GWESP(α)

0 𝑒0 1 − 1 − 𝑒−0
1

× 6 + 𝑒0 1 − 1 − 𝑒−0
3

× 1 =     7

0.5 𝑒0.5 1 − 1 − 𝑒−0.5
1

× 6 + 𝑒0.5 1 − 1 − 𝑒−0.5
3

× 1 =    7.55

1 𝑒1 1 − 1 − 𝑒−1 1 × 6 + 𝑒1 1 − 1 − 𝑒−1 3 × 1 =    8.03

The # of edges 
with 1+ shared 
partners



GWESP: a bit of intuition
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spi = # of edges with i shared partners𝑔𝑤𝑒𝑠𝑝 = 𝑒α 

𝑖=1

𝑛−2

1 − 1 − 𝑒−α 𝑖 𝑠𝑝𝑖

Count of edges in 
each triangle 
(i.e. # of triangles x 3)

Count of edges in at 
least one triangle 
(because only an edge’s 
first triangle counts)



2. Technical details of egocentric estimation
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Why does this work? (in a nutshell)

▪ MLEs for exponential families
◼ ERGMs are based in exponential family theory

◼ One of the properties of MLEs for exponential families is that 

E(sufficient stats under the model) = observed sufficient stats.

◼ Any graph with the same observed sufficient stats has the same probability under the model

So we don’t need to observe the specific complete network

◼ We just iterate our way (using MCMC) to finding the coefficients that satisfy 

E(sufficient stats under the model) = observed sufficient stats.

▪ Statistical inference for sampled data
◼ The sufficient stats are like any other sample statistic (e.g., a sample mean)

◼ There is a sampling distribution for these statistics

◼ Which allows the standard errors to be estimated



How to think about an egocentric sample
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Observe the complete network Observe all egos +
Reported info on alters

Sample egos +
Reported info on alters



Inference from an egocentric sample

◼ A two-step, finite population framework for inference

▪ Step 1:  inference on the network statistics 𝑔 𝑦
◼ We observe 𝑔𝑠 𝑦 , the sample network statistics

◼ The target of inference is 𝑔 𝑦 , the population level statistics 

◼ Relies on a scaling assumption, to define what is size-invariant (see next 
slide)

◼ Can use survey weights, this is a design-based estimator

▪ Step 2: inference on the coefficients q
◼ Similar to traditional ERGM inference

◼ Relies on the statistical principle of sufficiency, that 𝑔 𝑦 is sufficient for 
estimating q

◼ Intuitively: all networks with the same sufficient statistics have the same probability under the model

◼ But this is now a PMLE (Binder, 1983), and the variances are adjusted for step 1 estimates.
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Ref:  Krivitsky & Morris 2017



Intuition: Scaling up 𝑔𝑠 𝑦 to 𝑔 𝑦

◼ What is the natural size invariant parameterization?

▪ Consider, 𝑔 𝑦 = σ𝑦𝑖𝑗, the edges term

◼ There are 9 ties in our set of 20 nodes on the previous slide

◼ If you double the set to 40 nodes, how many ties would you expect?

18 =
9∗40

20
This preserves the mean degree, but density is now 

2∗18

40∗39
≈ 0.02

39 = 40
2

∗ 0.05 This preserves the density, but mean degree is now  
2∗39

40
≈ 2

▪ It is often natural to preserve the mean degree in social networks
◼ Note:  Mean degree = Density dependence; P(tie) = Frequency dependence

◼ (Krivitsky, Handcock and Morris 2011)

NME Workshop 40

Mean degree 
2𝑇

𝑁
=

2∗9

20
≈ 1

Density  p(tie) 
𝑇

𝑁
2

=
2𝑇

𝑁(𝑁 − 1)
=

2 ∗ 9

20 ∗ 19
≈ 0.05



Mean Degree Scaling Adjustment

◼ This is easy to accomplish with ERGM
▪ Include an offset in the model for −log(𝑁𝑜𝑏𝑠) to get a per capita scaling

▪ Transform the per capita estimates to any desired population size by 
adding log(𝑁∗)

◼ Can show that 
▪ Adjusting the edges term by the offset automatically scales all dyad 

independent terms

▪ Empirically, it also scales degree terms properly

▪ Empirically, it does not scale other dyad-dependent terms properly
◼ This is not an issue in most egocentrically sampled networks, b/c we don’t observe those statistics

◼ Other scalings have been proposed for these terms (Krivitsky & Kolaczyk 2015)
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Temporal changes in network size and composition

These, too, are easily handled by TERGMs

▪ Network size changes are handled by dynamic offsets
◼ At each time step, add the offset 𝑁𝑠𝑖𝑚(𝑡) back to the per capita 

estimate

▪ Network composition changes require no special treatment
◼ ERGMs coefficients are (log) odds ratios

◼ Odds ratios are margin independent

◼ So the odds-ratio is a natural composition-invariant scaling

◼ This is a general solution to the “two-sex problem” in open cohort 
dynamic modeling
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The PMLEs have good statistical properties

◼ Bias

▪ Estimates for unweighted data display no systematic bias

▪ For weighted data, bias can be controlled by using larger 
network size during estimation.  (see Krivitsky & Morris 2017 for more information)

◼ Variance

▪ Estimated standard errors appear to be slightly 
conservative

NME Workshop 43



Egocentric estimation for ERGMs
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◼ There is a also a specific package for estimating ERGMs from 
egocentrically sampled data

▪ ergm.ego

◼ Automates calculation of the target stats

◼ Handles survey weighting

◼ Provides other utilities for egocentric EDA

▪ Available on CRAN

◼ But is currently being refactored with a new API

◼ And is not yet integrated with EpiModel

◼ In the (near) future, this will be integrated with EpiModel…
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